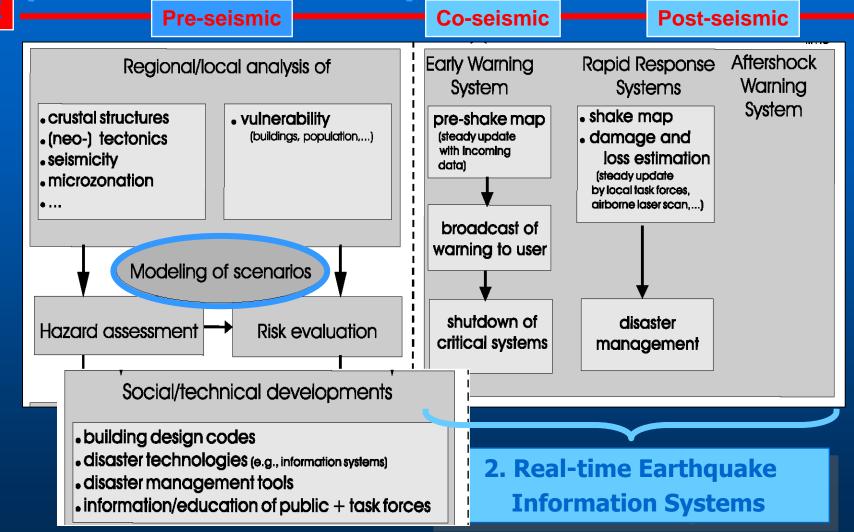


Post Earthquake Rapid Loss Assessment


SciNetNatHazPrev - PROJECT WORKSHOP

MARCH 13-14, 2014 ISTANBUL, TURKEY

VENUE: MAÇKA SOCIAL CENTER, ISTANBUL TECHNICAL UNIVERSITY FOUNDATION

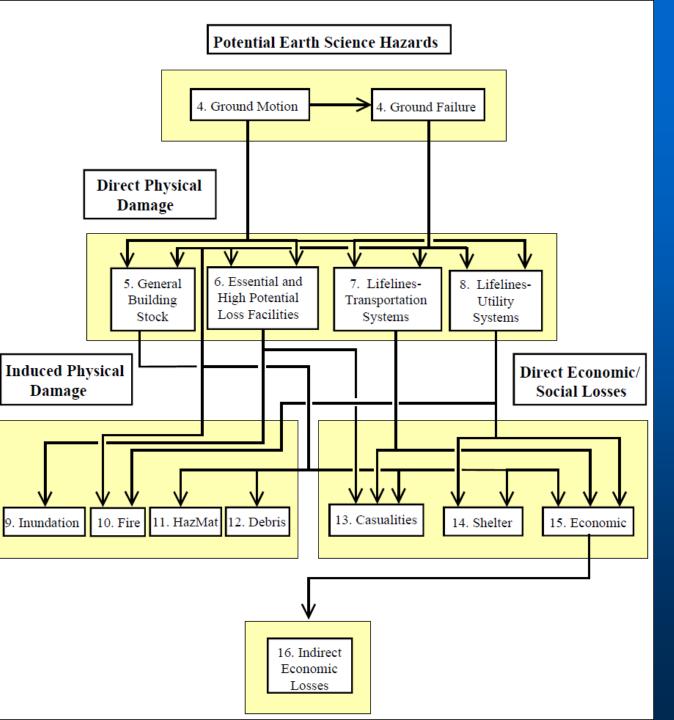
1. Preparative Steps

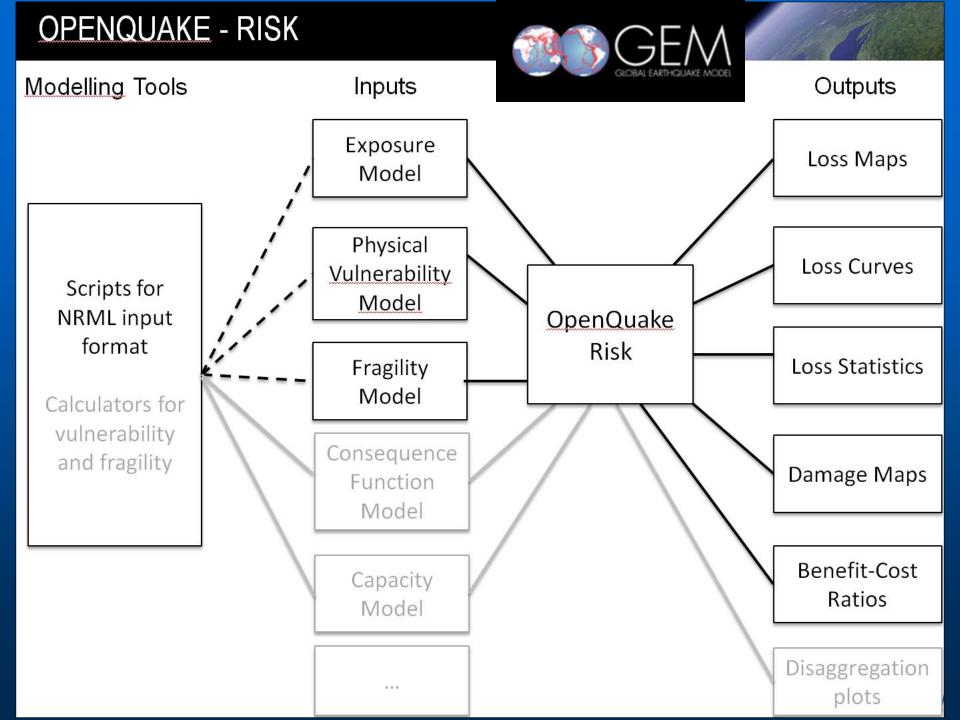
TIME

After Böse (2006)

Loss Modeling is a tool to estimate the loss to a portfolio following a catastrophic earthquake

- Earthquake Hazard
- Exposure (Portfolio Inventory, Structure / Contents values, Policy Conditions)
- Fragility and Vulnerability (Hazard Susceptibility: Structural Taxonomy)

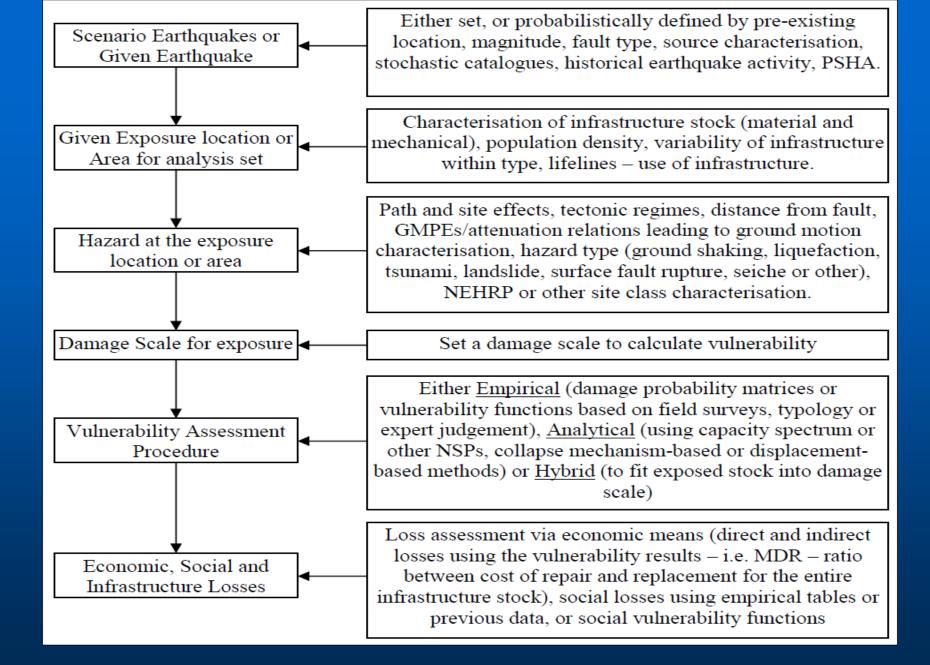

All Loss Models are simple mathematical models of the complex phenomena and encompass uncertainty.


- Aleatory = inherent randomness which can be accounted but cannot be reduced
- Epistemic = uncertainty due to lack of information which can possibly be reduced

Main Sources of model uncertainty are due to: Limited portfolio data, Engineering/scientific assumptions and Probabilistic approaches. Primary uncertainty is the uncertainty associated with the occurrence of the earthquake Secondary uncertainty uncertainty in the estimates of event losses

- Hazard uncertainty
- Vulnerability uncertainty
- Portfolio uncertainty

HAZUS®MH MR4


POST EARTHQUAKE RAPID LOSS ASSESSMENT

The reduction of casualties in urban areas immediately following an earthquake can be improved if the location and severity of damages can be rapidly assessed by the information from Rapid Loss Assessment Systems. Emergency management centers with functions in the immediate post-earthquake period (i.e. SAR, fire and emergency medical deployments) can allocate and prioritize resources to minimize the loss of life.

Available near real time loss estimation tools can be classified under two main categories depending on the size of area they cover: (1) Global/Regional Systems and (2) Local Systems.

For the global or regional near real time loss estimation efforts, Global Disaster Alert and Coordination System (GDACS), World Agency of Planetary Monitoring Earthquake Risk Reduction (QLARM), Prompt Assessment of Global Earthquakes for Response (PAGER) and Earthquake Loss Estimation Routine (ELER) can be listed.

Several local systems capable of computing damage and casualties in near real time already exist in several cities of the world such as Yokohama, Tokyo, Istanbul, Taiwan, Bucharest and Naples.

Identified Components of an Earthquake Loss Assessment (Rapid-Response, Post- or Pre- Earthquake) (Daniell, 2009)

Various worldwide rapid earthquake loss estimation software packages (Daniell et al, 2011)

Name	Database	Vuln. Type	Spatial	Population	Exposure	
EXTREMUM	QUAKELOSS	Hybrid	Russian now Worldwide	Point-based	Population+Buildings	
QUAKELOSS	QUAKELOSS	Hybrid	Worldwide	Point-based	Population+Buildings	
PAGER-Empirical	PAGER-CAT	Empirical	Worldwide	Landscan	Population	
PAGER-Semi- empirical	PAGER-CAT	Hybrid	Worldwide	Landscan	Population+Buildings	
PAGER-Analytical	-	Analytical	Worldwide	Landscan	Population+Buildings	
ELER-Level 0	Badal and Samardzhieva	Empirical	European	Landscan	Population	
ELER-Level 1	Coburn+Spence	Hybrid	European	Landscan	Population+Buildings	
ELER-Level 2	-	Analytical	European	Landscan	Population+Buildings	
QLARM	QUAKELOSS2	Hybrid	Worldwide	Point-based	Population+Buildings	
EQLIPSE-Q	CATDAT	Empirical	Worldwide	Point-based and Grid	Population+Buildings	
EQLIPSE-R	CATDAT	Hybrid	Worldwide	Point-based and Grid	Population+Buildings	

WAPMERR-QLARM World Agency of Planetary Monitoring and Earthquake Risk Reduction

QLARM (http://qlarm.ethz.ch) provides loss estimates for earthquakes in global scale after the event. The loss estimates are reportedly provided in about 30 minutes after the earthquake This service is being carried out in partnership between WAPMERR (World Agency of Planetary Monitoring and Earthquake Risk Reduction) and the Swiss Seismological Service (SED-ETH, Zurich). The estimates include: 1) The expected percentage of buildings in each of five damage states in each settlement, 2) the mean damage state in each settlement, 3) the numbers of fatalities and injured, with error estimates,

in each settlement.

The European Macroseismic Method of Giovinazzi (2005) is used to calculate building damages. The fragility models are pertinent to EMS-98 fragility classes.

The probability of occurrence of casualty state for a given seismic intensity is calculated as a product of the damage probabilities for seismic intensity and the casualty probabilities for damage grades of EMS-98.

It is claimed that the human losses are estimated within a factor of 2 for past earthquakes.

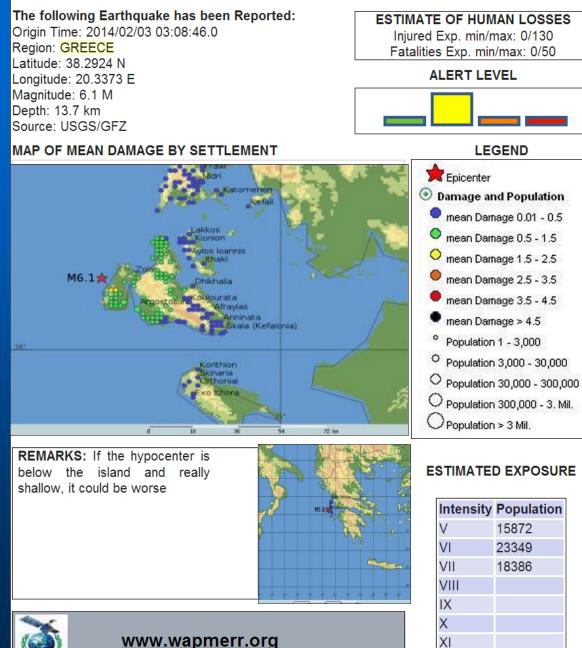
WORLD AGENCY OF PLANETARY MONITORING AND EARTHQUAKE RISK REDUCTION

WAPMERR

What is QLARM?

QLARM is a computer tool to estimate building damage and human losses due to earthquakes anywhere in the world.

The input needed for a loss calculation is the earthquake origin hour, the coordinates of the epicenter, the depth and the magnitude. The program then calculates the ground shaking as a function of distance from the epicenter. In the data base of QLARM, the population of about 2 million settlements is known and each settlement has a profile of building fragility. The degree of damage due to the calculated shaking is determined for each of five fragility classes, and from that the resulting numbers of fatalities and injured are estimated.


The most accurate results could be obtained if the building inventory had been compiled by engineers on the ground. However, this is not possible for most cities, especially in developing countries. For this reason, the building fragilities have been calibrated, using about 1000 earthquakes for which losses are known. Therefore, QLARM estimates are most reliable in countries where earthquakes occur frequently. The building stock in countries without recent earthquakes is extrapolated from neighboring areas with similar building style and quality.

A true test of the performance is provided by **real-time estimates** because no adjusting of parameters is possible to achieve the correct results. The real-time estimates are usually distributed by email and telephone call less than 30 minutes after an earthquake occurs. They can assist rescue teams to make a decision whether or not to mobilize. Recent alerts can be seen **on our website including maps**.

Earthquake Loss Estimate

XII

An earthquake ML5.8 occurred on Feb.3, 2014 03:08 in the Island of Kefalonia with structural damage (NOA)

Lon. 20.3913 Lat. 38.2628

SELENA - Seismic Loss Computation Engine

SELENA (Seismic Loss Estimation using a Logic Tree Approach) is a software tool for seismic risk and loss assessment.

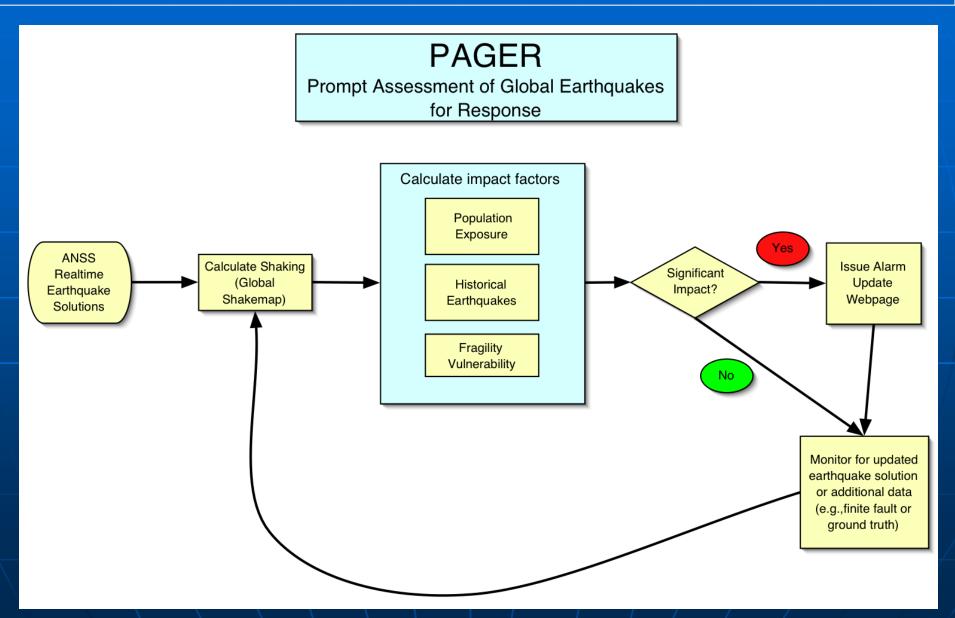
It relies on the principles of capacity spectrum methods (CSM) and follows the same approach as the loss estimation tool for the United States HAZUS-MH (2003).

A logic tree-computation scheme has been implemented in SELENA to account for epistemic uncertainties in the input data. The user has to supply a number of input files that contain the necessary input data (e.g., building inventory data, demographic data, definition of seismic scenario etc.) in a simple pre-defined ASCII format. SELENA computes ground shaking maps for various spectral periods (PGA, Sa(0.3 s) and Sa(1.0 s), damage probabilities, absolute damage estimates (including Mean Damage Ratios MDR) as well as economic losses and numbers of casualties.

SELENA can compute the ground motion parameters by built-in GMPRs for deterministic scenario earthquakes. For real time analysis, data from strong motion stations (at least PGA values) can also be used with certain limitations. Based on these ground motion parameters SELENA generates site-specific response spectra

PAGER (Prompt Assessment of Global Earthquakes for Response)

PAGER (USGS, USAID) is an automated system that produces content concerning the impact of significant earthquakes around the world, informing emergency responders, government and aid agencies, and the media of the scope of the potential disaster. PAGER has three separate methodologies for earthquake loss estimation as part of their package (empirical, semi-empirical and analytical).


PAGER rapidly assesses earthquake impacts by comparing the population exposed to each level of shaking intensity with models of economic and fatality losses based on past earthquakes in each country or region of the world.

PAGER information are generated for all earthquakes of magnitude 5.5 and greater globally and for lower magnitudes of about 3.5-4.0 within the US.

PAGER's results are posted on the USGS Earthquake Program Web site (http://earthquake.usgs.gov/) and sent in near real-time to emergency responders, government agencies, and the media.

In the hours following significant earthquakes, as more information becomes available, PAGER's content is modified.

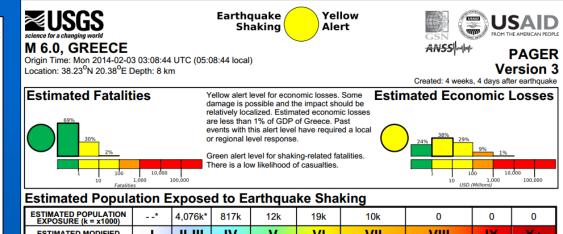
Prompt Assessment of Global Earthquakes for Response PAGER USGS/USAID

Databases, Products, Tools, and Services PAGER (Wald et al, 2012)

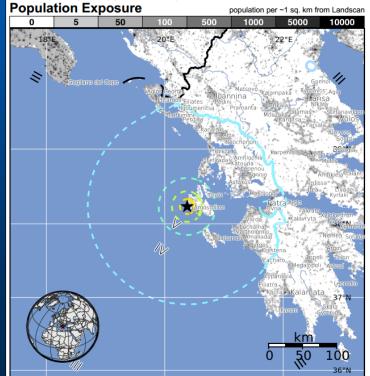
Database/Product	Description	Use	Reference				
	Earthqu	iake Source					
Fast Finite Faults	Rapid slip models for major earthquakes	Compute shaking; tsunami, stress change	Ji et al (2004); Hayes & Wald (2008)				
PAGER-Cat	Quality earthquake catalog (1900-2006)_	Input for ShakeMap Atlas; ExposureCat	Allen et al (2008a)				
Shaking Distribution							
Global Slope Data Topographic slope Landslides, Vs30 Verdin et al (2007)							
Global Vs30 Server	Vs30 values for the globe	Estimating site amplification	Allen & Wald (2008); Wald & Allen (2008)				
Global "Did You Feel It" Intensities	Rapid intensities from Internet users	Constrains Shake-Map & event bias	Wald et al (2006b); Wald et al (2008b)				
Ground Motion/ Intensity Relations	New relations relating ground motion & intensity	Relate MMI to peak motions	Gerstenberger et al (2009)				
ShakeMap Uncertainty	Quantitative & Qualitative shaking values	Computing loss uncertainty	Wald et al (2008b)				
ShakeMap Atlas	ShakeMaps for global earthquakes (1970-on)	Scenarios, planning, hazard calculations	Allen et al (2008c)				
Rapid Global ShakeMaps (GSM)	Estimated ShakeMaps for all global earthquakes (M>5.5)	Shaking input for loss estimation, decision making	Wald et al (2006a)				

Databases, Products, Tools, and Services PAGER (Wald et al, 2012)

Database/Product	Description	Use	Reference
	Loss & Imp	act Estimation	
Deadly Earthquake List	Online resource list (1900-2006)	General Reference	On Wikipedia: see "List of Deadly Earthquakes"
Exposure-Cat	Population exposed per intensity for each Atlas ShakeMap	Fatality rates calculations	Allen et al. (2008a)
Global Building Inventory	Country-based data on buildings & collapse rates	Country-specific loss estimation	Jaiswal & Wald (2008b); Porter et al (2008a)
Empirical Loss Model	Country-specific fatality rates	Fatality estimates given exposure	Porter et al (2008a) Jaiswal et al (2008a)
Semi-Empirical Loss Model	Country-specific, building vulnerability	Fatality estimates based on structures	Jaiswal et al (2008b)
Analytical Loss Model	HAZUS vulnerability functions	Structure dependent loss computations	Porter (2008); Porter et al (2008a)
	Reporting & N	lotifications	
OnePAGER	Population Exposure Notifications	Post-earthquake decision making	Earle & Wald (2007)


== PRELIMINARY EARTHQUAKE REPORT ==

Region: GREECE Geographic coordinates: 38.292N, 20.337E Magnitude: 61 Depth: 13 km Universal Time (UTC): 3 Feb 2014 03:08:46 Time near the Epicenter: 3 Feb 2014 05:08:46 Local standard time in your area: 3 Feb 2014 05:08:46


Location with respect to nearby cities: 12 km (7 mi) NW of Lixourion, Greece 74 km (45 mi) NW of Zakynthos, Greece 81 km (50 mi) SSW of Preveza, Greece 95 km (58 mi) W of Mesolongi, Greece 298 km (184 mi) W of Athens, Greece

ADDITIONAL EARTHQUAKE PARAMETERS

event ID	: us c000mfuh
version	
number of phases	: 93
rms misfit	: 1.02 seconds
horizontal location e	error : 0.0 km
vertical location error	or : 4.4 km
maximum azimuthal	gap : 35 degrees
distance to nearest	station : 186.9 km

PAGER content is automatically generated, and only considers losses due to structural damage. Limitations of input data, shaking estimates, and loss models may add uncertainty. http://earthquake.usgs.gov/pager

Structures:

Overall, the population in this region resides in structures that are a mix of vulnerable and earthquake resistant construction.

Historical Earthquakes (with MMI levels):

Date	Dist.	Mag.	Max	Shaking
(UTC)	(km)		MMI(#)	Deaths
1997-11-18	98	6.6	VII(6k)	0
1978-06-19	369	5.3	VII(3k)	1
1999-09-07	288	6.0	IX(10k)	143

Recent earthquakes in this area have caused secondary hazards such as landslides that might have contributed to losses.

Selected City Exposure from GeoNames.org

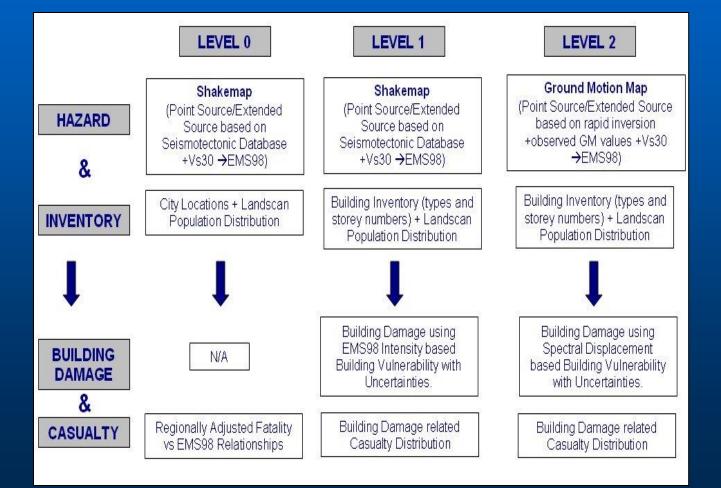
	and a start g	
ΜМΙ	City	Population
VII	Lixourion	4k
VI	Argostolion	10k
VI	Valsamata	1k
V	Sami	1k
v	Ithaki	2k
V	Poros	1k
Ш	Patra	163k
ш	Ioannina	64k
Ш	Larisa	129k
ш	Lamia	47k
Ш	Vlore	90k
oold c	ities appear on map	(k = x1000)

Event ID: usc000mfuh

ELER: Earthquake Loss Estimation

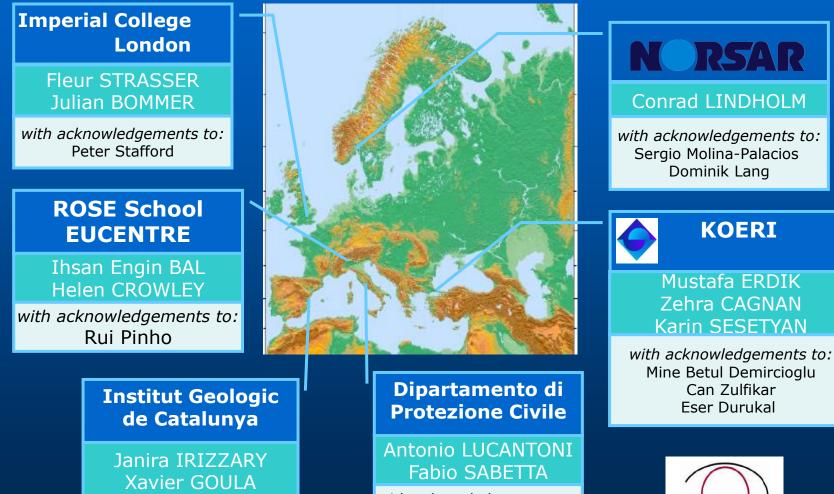
Under the EU Project NERIES, a rapid loss estimation tool (ELER) is developed for rapid estimation of earthquake damages, casualties and shelters requirements throughout the Euro-Med Region by researchers from KOERI, Imperial College, NORSAR and ETH-Zurich.

The shake mapping methodology is similar to the USGS ShakeMap. Based on the event parameters the distribution of ground motion intensity parameters are estimated using GMPEs. If strong ground motion recordings are available, the prediction distributions are bias corrected.


Earthquake losses (damage and casualty) can be estimated at different levels of sophistication, namely Level 0, 1 and 2, depending on the resolution of building inventory data.

Both Level 0 (quite similar to PAGER system of USGS) and Level 1 analyses of ELER software are based on obtaining intensity distributions analytically and estimating total number of casualties either using regionally adjusted intensity-casualty or magnitude-casualty correlations (Level 0) or using regional building inventory databases (Level 1). These levels are used for rapid loss estimation. NERIES – EU FP6 Network of Research Infrastructures in Earthquake Seismology

KOERI, Imperial College, NORSAR, EMSC, ITSAK, DPC-SSN, ICC, IST



ELER SOFTWARE

ISTANBUL TESTBED EXERCISE COMPARISON OF LOSS RESULTS

A damage estimation exercise has been carried out using the building stock inventory and population database of the Istanbul Metropolitan Municipality and selected European earthquake loss estimation methodologies: KOERILOSS, SELENA, ESCENARIS, SIGE and DBELA.

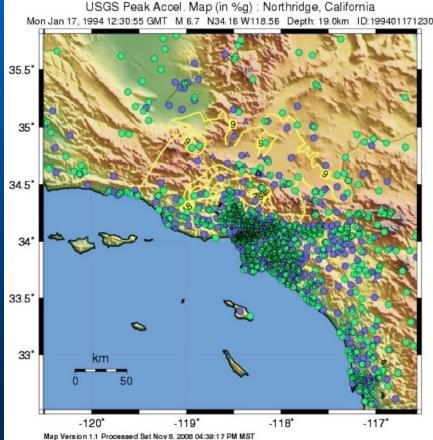
with acknowledgements to: Nuria ROMEU *with acknowledgements to:* Filomena Papa Rachele Ferlito

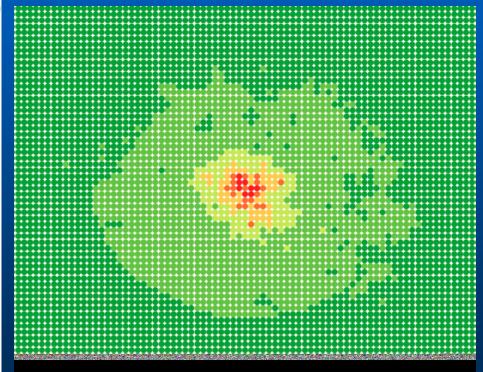
RESULTS FOR INTENSITY-BASED CALCULATIONS

Building Damage	EMS98 Damage Grade	Koeri-MSK	ESCENARIS Level 0	ESCENARIS Level 0	SIGE-DPC
HEAVY	D3	76,944	101,797	<mark>67,034</mark>	25,150 unusable (D4 + 40%
BEYOND REPAIR	D4+D5	40,268	53,831	32,148	D3) and 1,669 collapsed (D5)

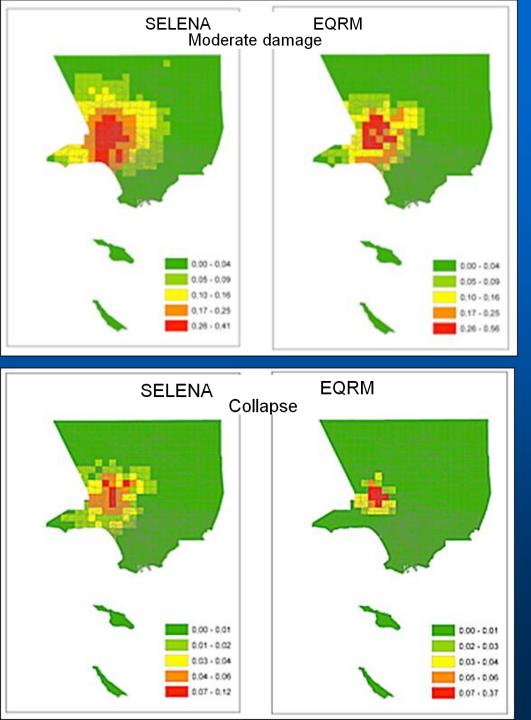
RESULTS FOR SPECTRUM-BASED CALCULATIONS								
Structural Damage	DBELA							
MODERATE	D3	195, 097	200,918					
EXTENSIVE	D4	67,395	81,497					
COLLAPSE	D5	34,828	46,968					

Evaluation of Seismic Risk Software

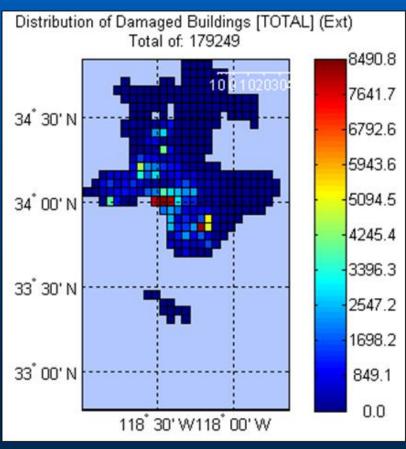

GEM1 Seismic Risk Software Comparison


Software	Owner/Developer	Development status	Availability status	Applicabiity
SELENA	NORSAR	Version 4: matlab Version 5: C	Open source	User-defined
EQRM	Geoscience Australia	Version 1.0svn1393	Open source	Australia (default) User-defined
ELER	KOERI (NERIES project)	Version 2.0	Standalone application provided	Euro-med User-defined
QLARM	WAPMERR-SED- ETHZ	Version 1.1.7	Open source	Worldwide
CEDIM	CEDIM		Source code provided	User defined

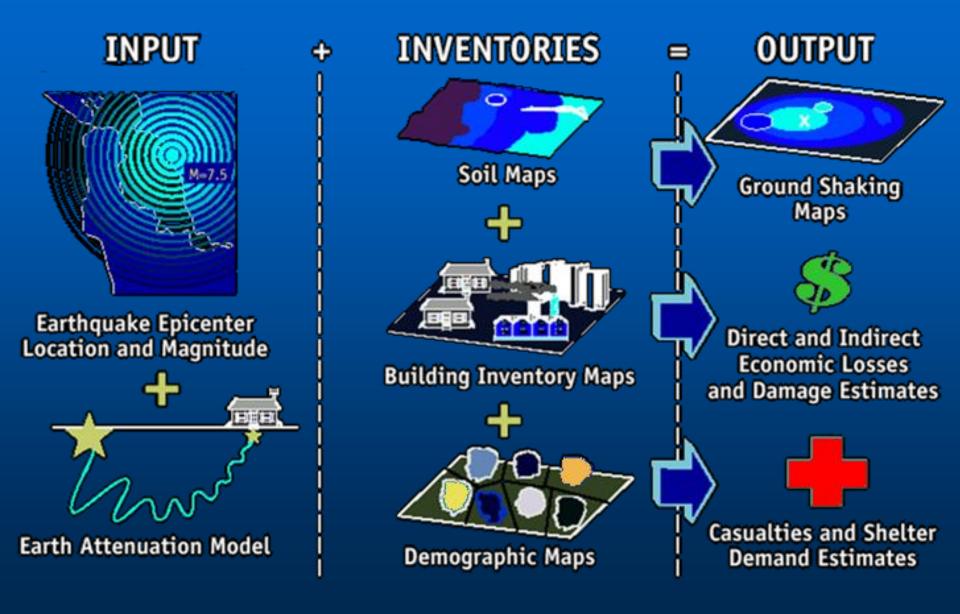
Overview of Code Comparison Test-Bed Application: Los Angeles



Scenario earthquake: Northridge, M=6.7, USGS ShakeMap:



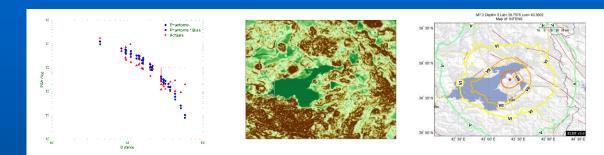
PGA ShakeMaps



ELER

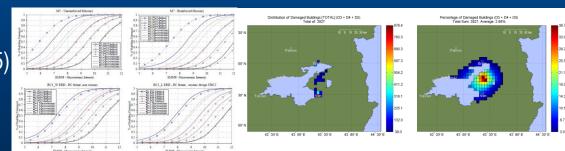
RT-ELER

How does RT-ELER work?


• HAZARD

Epicenter (KOERI)

GMPE (Boore & Atkinson 2007)


IMPE (Wald 1999)

Slobe Based Vs30 (Wald & Allen 2009)

• LOSS

Building Inventory (KOERI) Intensity Based Damage (Giovinazzi 2005) Casualty Estimations (KEORI 2002)

Kandilli.info

http://www.koeri.boun.edu.tr/sismo/eler/index.html

Tarih	Saat	Enlem	Boylam	Derinlik	MD	ML	Mw	Siddet
2014.03.04	17:15:46	38.8623	43.6422	5		3.3		
2014.03.04	16:11:17	38.8502	43.6558	6		3.5	3.6	
2014.03.03	16:14:49	38.4362	45.136	5		3.0		Ш
2014.03.02	23:15:16	41.7402	43.1098	5.3		3.4		
2014.03.02	07:33:16	36.786	35.1547	9.4		3.0		
2014.03.02	06:29:09	36.7735	35.1567	13		3.5		
2014.03.02	06:25:57	36.7853	35.1752	6.7		4.0		IV
2014.03.02	05:34:27	44.4127	34.3493	63.1		4.1		IV
2014.03.01	17:38:27	35.142	27.413	11.2		3.2		
2014.03.01	12:54:50	39.3765	44.4453	8.4		3.0		
2014.03.01	02:09:25	34.1795	26.1847	97		3.4		
2014.03.01	00:13:53	38.258	22.4632	12.7		3.6		
2014.02.28	17:35:15	41.1922	25.482	11.7		3.3		
2014.02.28	15:16:57	39.2738	29.2982	5		3.6		
2014.02.28	05:51:48	36.0488	25.0797	8.3		4.0		
2014.02.27	21:16:55	35.5582	23.4047	30.9		3.8		
2014.02.27	10:09:22	39.0262	30.0553	5		3.9		IV
2014.02.27	10:03:58	39.006	30.0305	5		3.0		
2014.02.27	09:59:54	39.0097	30.0587	6		3.9	3.8	
2014.02.26	14:10:42	38.884	42.3702	5		3.0		Ш
2014.02.26	09:34:17	41.0367	39.0897	11.5		3.0		

<u>ex.ntmi</u>	1863
Yer	
KELLE-(VAN)
KELLE-(VAN)
IRAN	
GURCISTAN	
YASSIOREN	<u>-KARATAS (ADANA)</u>
DAMLAPINA	R-KARATAS (ADANA)
KEFELI-TAR	SUS (MERSIN)
KARADENIZ	
MEDITERRA	NEAN SEA
SARICAVUS	-DOGUBAYAZIT (AGRI)
<u>GIRIT ADAS</u> SEA)	I ACIKLARI (MEDITERRANEAN
	,
<u>SEA)</u>	M
<u>SEA)</u> YUNANISTAI YUNANISTAI	M
SEA) YUNANISTAI YUNANISTAI KIRGIL-EME	Ч
SEA) YUNANISTAI YUNANISTAI KIRGIL-EME GIRIT ADAS	N N T (KUTAHYA)
SEA) YUNANISTAI KIRGIL-EME GIRIT ADAS GIRIT ADAS	N N T (KUTAHYA) I (MEDITERRANEAN SEA)
SEA) YUNANISTAI KIRGIL-EME GIRIT ADAS GIRIT ADAS KARAAGAC-	N N T (KUTAHYA) I (MEDITERRANEAN SEA) I (MEDITERRANEAN SEA)
SEA) YUNANISTAI KIRGIL-EME GIRIT ADAS GIRIT ADAS KARAAGAC-	N N IT (KUTAHYA) I (MEDITERRANEAN SEA) I (MEDITERRANEAN SEA) ALTINTAS (KUTAHYA)
SEA) YUNANISTAI KIRGIL-EME GIRIT ADAS GIRIT ADAS KARAAGAC- KARAAGAC-	N N IT (KUTAHYA) I (MEDITERRANEAN SEA) I (MEDITERRANEAN SEA) ALTINTAS (KUTAHYA) ALTINTAS (KUTAHYA)

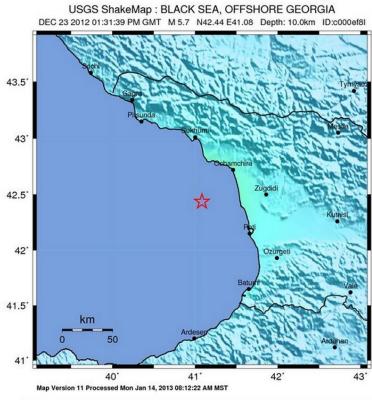
RT ELER asagidaki deprem icin calismistir / RT ELER was triggered by the following event

Aletsel Buyukluk / Magnitude : 5.5 Merkez / Epicenter : 42.4255 , 40.9522 derinlik / depth : 8.7 km Tarih / Date : 20121226 Zaman / Time : 004431

Bu deprem icin otomatik olarak tahmin edilen siddet haritasi / Automatically generated analysis results for this event http://www.kandilli.info/2012/12/26/004431/index.htm

Son yuz deprem icin liste / List of last 100 events: http://www.kandilli.info

No Damage Estimation

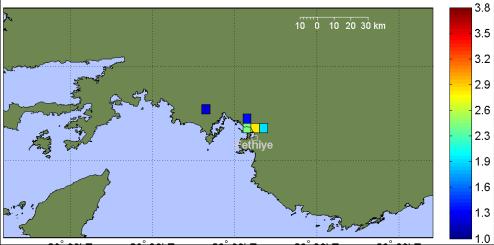


Shakemap usc000ef8l

Instrumental Intensity Peak Ground Acceleration Peak Ground Velocity Uncertainty Spectral Response 0.3 sec Period 1.0 sec Period 3.0 sec Period Media Maps Decorated Bare Downloads

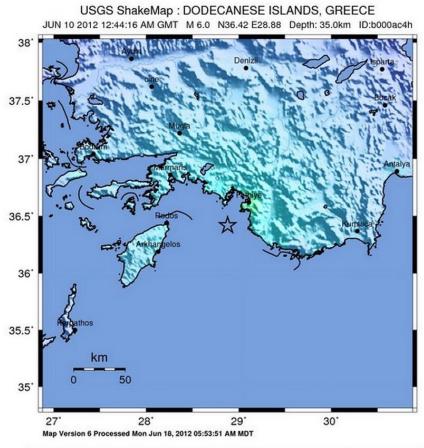
Instrumental Intensity

Available Formats: JPG (97 kB) || PS (465 kB)



PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL	1	11-111	IV	V	VI	VII	VIII	łX	*+

RT ELER was triggered by the following event Magnitude : 6.1 Epicenter : 36.4715 , 28.8995 depth : 19.6 km Date : 20120610, Time : 154416 Automatically generated analysis results for this event http://www.kandilli.info/2012/06/10/154416/index.htm Damage Estimation Summary: D5:0, D4:2, D3:39, D2:419, D1:3191

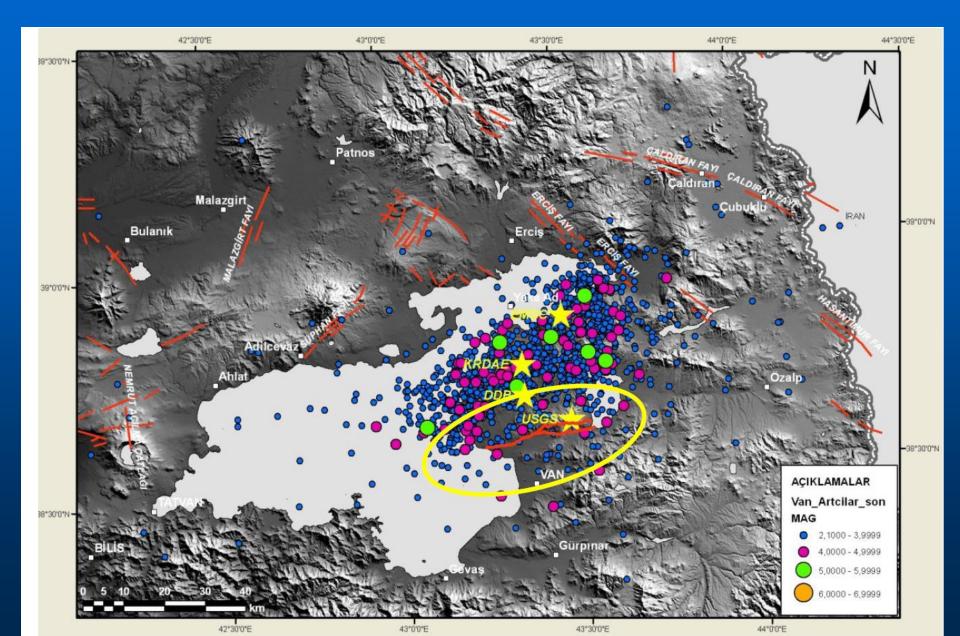


Shakemap usb000ac4h

Instrumental Intensity Peak Ground Acceleration Peak Ground Velocity Uncertainty Spectral Response <u>0.3 sec Period</u> <u>1.0 sec Period</u> <u>3.0 sec Period</u> Media Maps <u>Decorated Bare</u> Downloads

Instrumental Intensity

Available Formats: JPG (98 kB) || PS (364 kB)



PERCEIVED SHAKING	Not felt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Mod./Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<0.05	0.3	2.8	6.2	12	22	40	75	>139
PEAK VEL.(cm/s)	<0.02	0.1	1.4	4.7	9.6	20	41	86	>178
INSTRUMENTAL	1	11-111	IV	V	VI	VII	VIII	IX	8

Performance of Rapid Earthquake Loss Estimation Systems

For rapid loss assessment after an earthquake the fast and reliable information on the source location and magnitude is essential. Most rapid loss basements (e.g.PAGER and QLARM) rely on teleseismic determinations of epicenters. This reliance can create error in loss estimations, especially in populated areas, since the mean errors in real-time teleseismic epicenter solutions, provided by U.S. Geological Survey (USGS, the PDE) and/or the European Mediterranean Seismological Center (EMSC), can be as large as 25 to 35km (Wyss et. al, 2011).

Oct. 23, 2011 Mw7.2 Van earthquake

Timeline of The Earthquake

00d:00h:00m : Earthquake, 23 October 2011 13:41 00d:00h:05m : Automatic SMS alarm sent ML 6.6, P waves reach Vienna 00d:00h:08m : Published on the web and Twitter, RT ELER triggered 00d:00h:10m : USGS announces Mw 7.6 00d:00h:14m : P waves reach Colorado, CANL 00d:00h:16m : RT-ELER sends out first loss estimations with ML 6.6 (80 fa 00d:00h:20m : USGS revises to Mw 7.3 00d:00h:27m : First USGS PAGER loss estimations; red alarm 10k-100k fa 00d:00h:30m : First news reports of collapsed buildings 00d:00h:43m : RT-ELER updates results with Mw 7.3 (710 fatalities D5-D4 Population Exposure 00d:01h:20m : First news reports of confirmed casualties (8 people in Erci 00d:01h:31m : USGS PAGER Version 2; 10k-100k fatalities 00d:02h:00m : KOERI announces loss estimation on press conference: 71 01d:00h:00m : Official death toll: 217 01d:03h:31m : USGS PAGER Version 3; 1k-10k fatalities 01d:20h:00m : Official death toll: 432 04d:08h:00m : USGS PAGER Version 4; 100-1000 fatalities 05d:00h:00m : Official death toll: 550 12d:00h:00m : Final official death toll: 604 Edremit

Structures: Overall, the population in this region resides Structures: Overall, the population in this region resides in structures that are a mix of vulnerable and

HAREF

in structures that are a mix of vulnerable an earthquake resistant construction. The predominant vulnerable building types are unreinforced brick masonry and nonductile reinforced concrete frame construction.

stimated Fatalities

Selected City Exposure

 MMI City
 Populatio

 VIII Van
 372

 VIII Ercis
 92

 VIII Ercis
 92

 VIII Caria
 12

 VIII Caria
 14

 V Gyumri
 148

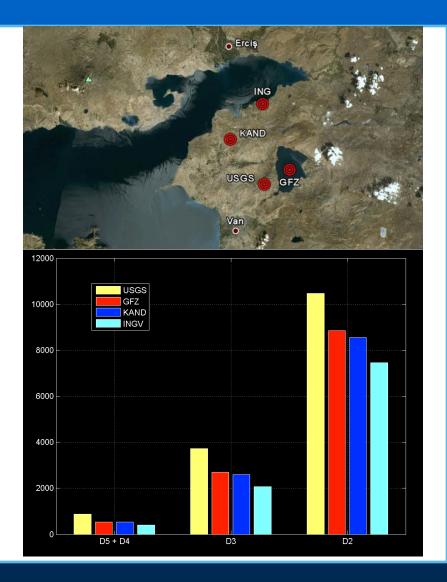
 V Batman
 302

 V Erzurum
 421

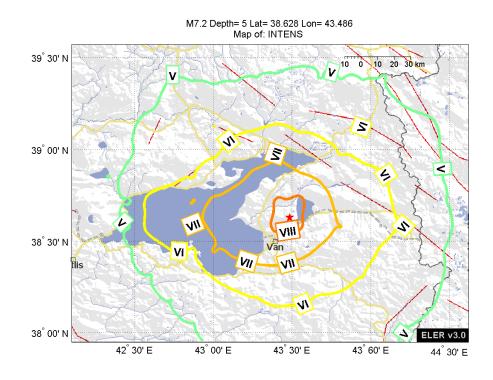
 IV Yereyan
 1.093

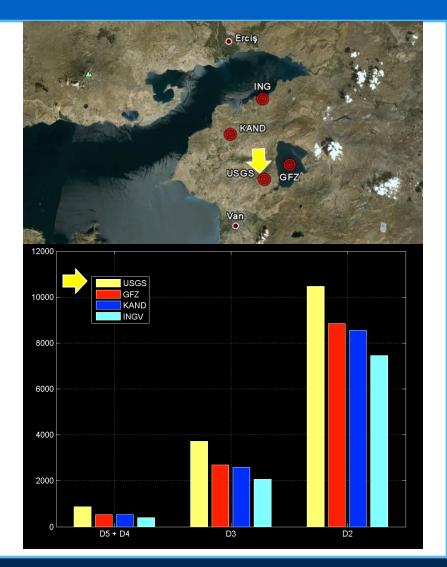
43[°] 30' E

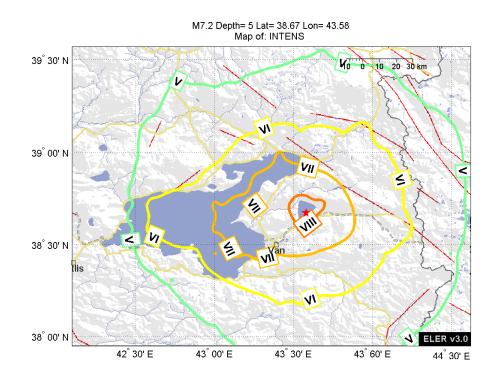
43° 00' E

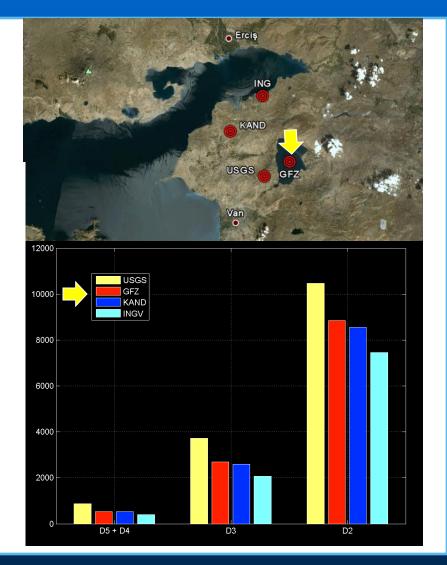

Different Epicenter locations

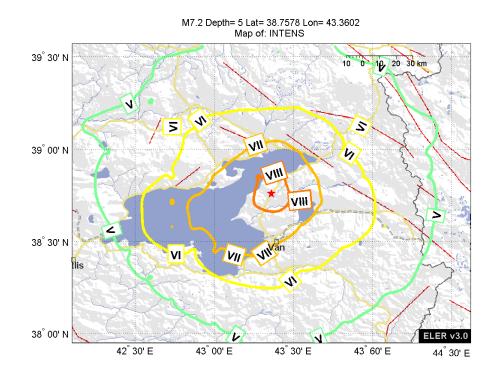
Different Epicenter locations

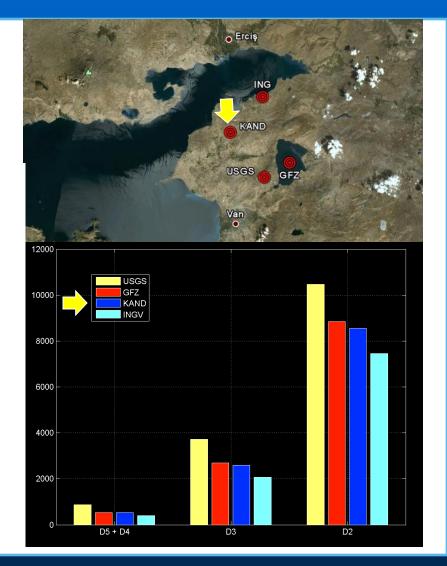

Inter-distance of 15-20km. Small?

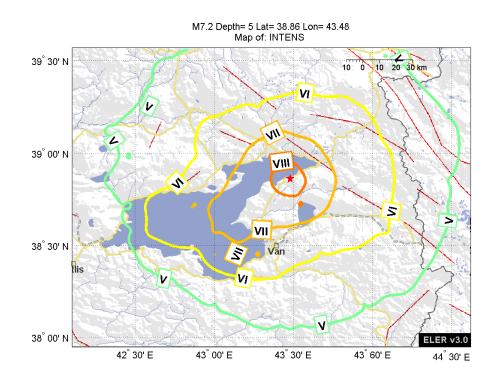

In terms of loss estimations?

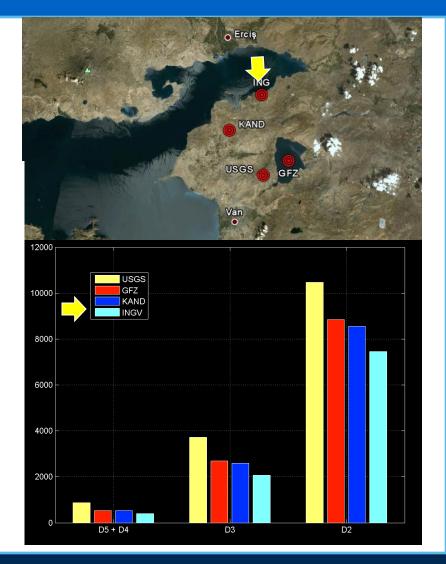

Different Epicenter locations

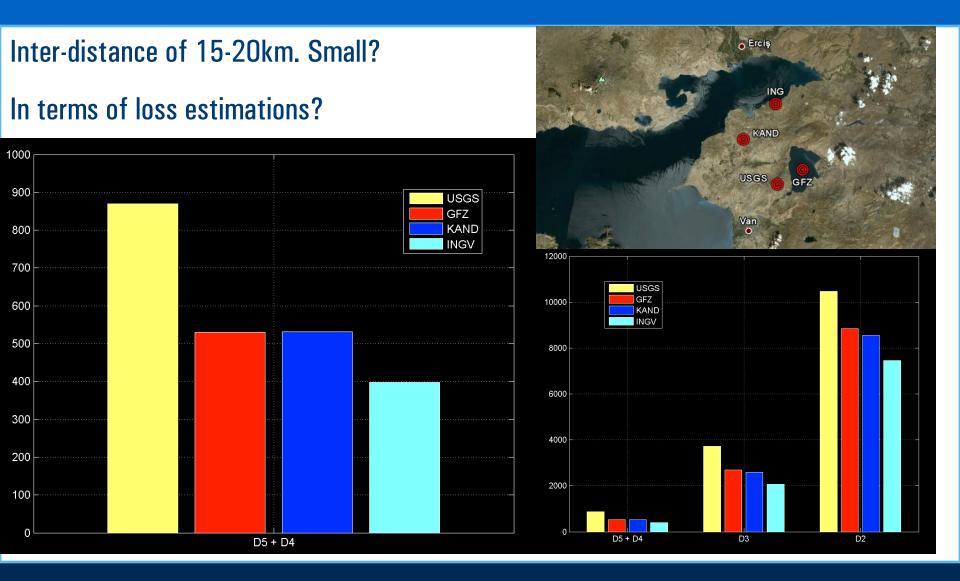

Inter-distance of 15-20km. Small? In terms of loss estimations?

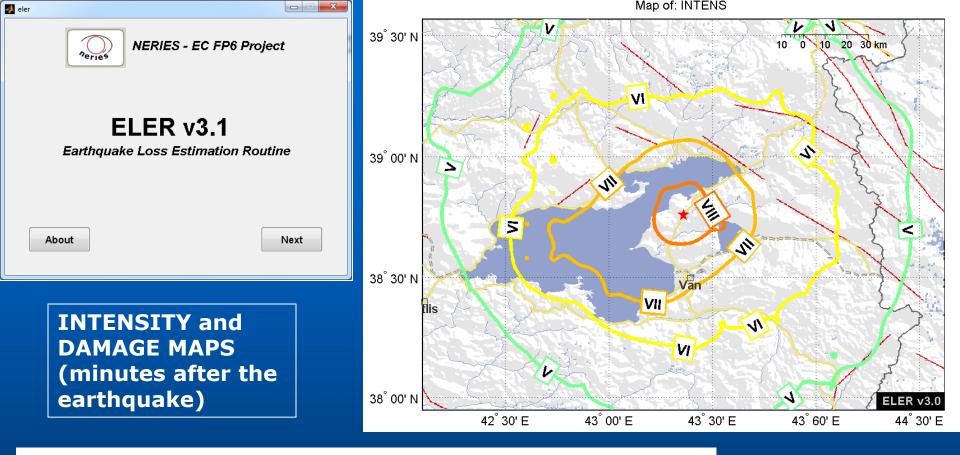



Inter-distance of 15-20km. Small? In terms of loss estimations?

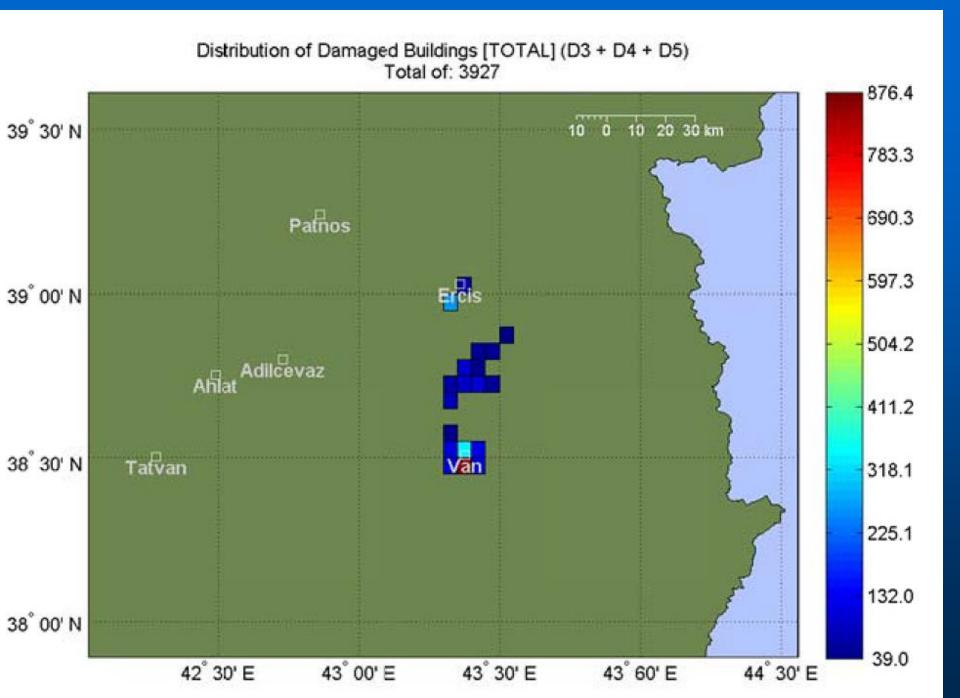



Inter-distance of 15-20km. Small? In terms of loss estimations?





Inter-distance of 15-20km. Small? In terms of loss estimations?



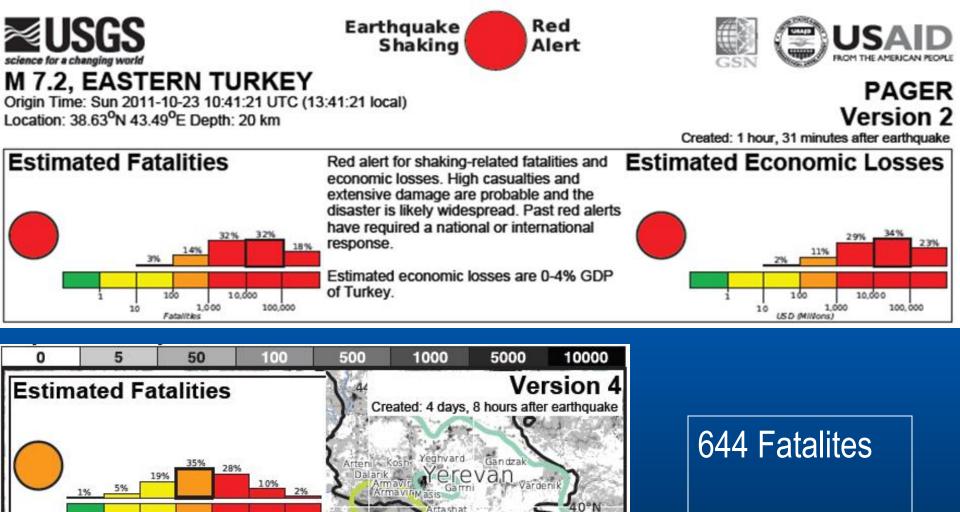
Distribution of Damaged Buildings [TOTAL] (D3 + D4 + D5) Total of: 3927

Distribution of Fatalities [KOERI 2002] Total of: 710

> ABOUT 4500 BUILDINGS WITH MEDIUM to TOTAL DAMAGE 604 + 40 = 644 DEATHS

Distribution of Fatalities [KOERI 2002] Total of: 710 132.3 10 0 10 20 30 km 39[°] 30' N 118.4 Pathos 104.5 90.6 Ercis 39[°] 00' N 76.6 Ahlat Adilcevaz 62.7 38[°] 30' N Tatvan Van 48.8 34.9 20.9 38[°] 00' N

43[°] 30' E


43[°] 60' E

43[°] 00' E

42[°] 30' E

7.0

44[°] 30' E

Naxciva

Qareh,Z

Khvov

Karakoyunlu

Divadin Dogubayazit

Oza

100

Fatalities

Karacoban

Bulanik

Tatvan

10

Hinis

MUS Korkut

Yedisu

Bingo

Genc

Lice

Karliova.

Solhan

10.000

Malazgir

Ahlat

100,000

Patnos

Ercis

Van

1,000

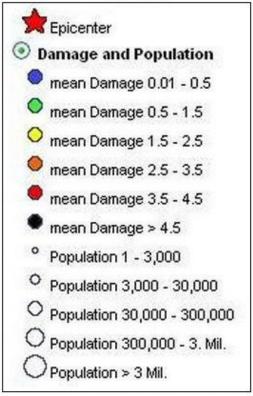
Economic loss 2 Bilion USD (0.2% of GDP)

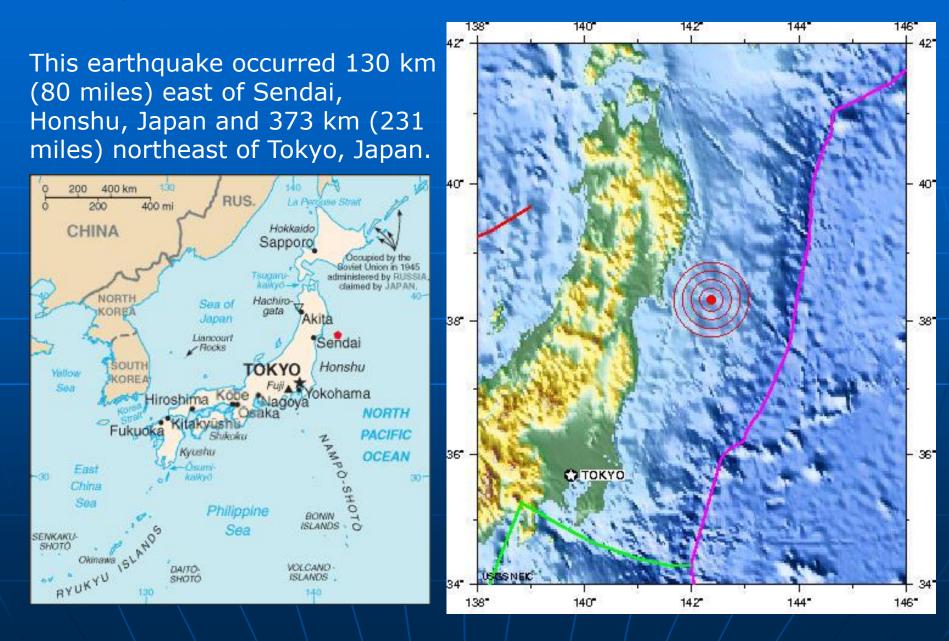
Earthquake Loss Estimate

The following Earthquake has been Reported:

Date: 2011/10/23 10:41:23.0 6 Region: TURKEY Latitude: 38.76 N Longitude: 43.36 E Magnitude: 7.3 M Depth: 10 km Source: ELER ESTIMATE OF HUMAN LOSSES Injured Exp. min/max: 20000/60000

Fatalities Exp. min/max: 8000/20000


ALERT LEVEL


MAP OF MEAN DAMAGE BY SETTLEMENT

gan Eleskirt Akbulgur Karakose Karayazi Tablica Dogubayazit Divadm Syurbahan-Syufty Maku Maiazer Seyah Che. Merodine Adlicev 22G Ahlat Vortimis Dealo **3** Auts: Bill Gurpine Sirvan Siirt Eruh Celemenik Yuksekova Bevtussebar Findik

LEGEND

Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Earthquake off Honshu 🛛 🗅	Inbox x				
wapmerr@maxwyss.com author@n to undisclosed recipients v	naxwyss.com	3/11/11 🚽	* *		
The Following Earthquake has	been Reported:				
	000 ••••••••••••••••••••••••••••••••••	noment. However, the epic			
	to undisclosed recipient SECOND MESSAGE		ed:	:	3/11/11 ☆ 🗖
	Date: Region: Magnitude: Latitude: Longitude:	2011/03/11 05:46:22.0 Near east coast of easte M 8.5 38.31 N 142.52 E	ern Honshu, Ja	apan	
	The magnitude I ha Tsunami warning ce NEIC of the USGS e	-	message was	from GFZ M8.5	
	-	e dimensions of this rupt hore than 100 km. Thus			

+

Socio-economic loss estimates for the 2011 Tohoku EQ.

Software	Time since	Magnitude	Estimate NB: PAGER = Shaking losses only to	
	event		structures.	
USGS PAGER v1	22min 58sec	Mw7.9	27% 27% 7% 19% 19%	
WAPMERR QLARM	similar	Mw8.5	0-1000 fatalities, 0-200 injuries	
USGS PAGER v3	75min	Mw8.9	42% 53% 42% 14% 35% 14% 11% 1 100 10,000 1 1 100 10,000 10,000 10 000 100,000 100,000	
USGS PAGER v5	2hrs44min- 2hrs47min	Mw8.9	47% 48% 39% 34% 1 100 10,000 1 10% 10 1,000 100,000 10 10,000 10 1,000 100,000 10 10,000	
USGS PAGER v6	3 days, 16hrs	Mw9.0	67% 31% 41% 20% 13% 7% 20% 1 100 10,000 100,000 10 1,000 100,000 100,000 10 1,000 100,000 100,000	
USGS PAGER v12	15 days	Mw9.0	36% 37% 24% 35% 32% 1% 1% 1% 7% 100 10,000 10,000 100,000	
Japanese Cabinet Office	3 months	Mw9.0	Direct: 16.4 trillion JPY (\$208 billion) for the 4 largest prefectures (8.4 trillion JPY Infrastructure, 2.4 trillion JPY Homes, 1.6 trillion JPY Manufacturing, 4.0 trillion JPY Other)	

Casualty range loss estimates from selected casualty models for the 2011 Tohoku EQ for earthquake shaking deaths (Daniell et al, 2011)

Casualty Model	Lower	Median*	Upper	
Kawasumi (1954)	2187	3410	5567	
Tokyo Metropolitan Government (1978)	1716	2334	3132	
Saitama Prefecture (1982)	35	39	43	
Ohta et al. (1983)	210	288	409	
Tokyo Metropolitan Government (1985)	229	291	360	
Gotoh and Ohta (1985)	95	120	156	
Osaka City Method	781	1098	1601	
Ikeda and Nakabayashi (1996)	729	1026	1496	
Ye and Okada (2001)	104	163	244	
USGS PAGER v12	100	1030	10000	
WAPMERR QLARM	0	Unk.	1000	

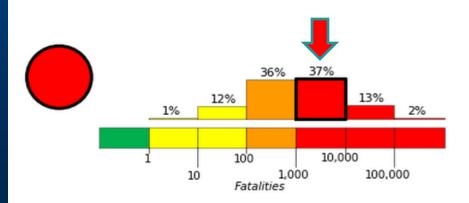
15815 have been killed and 3966 are missing (19781 in total). Around 230 should be earthquake-collapse related. Around 250 could be related to other causes such as fire, landslides etc. Around 94% of deaths are tsunami related.

PAGER - M 9.0 - NEAR THE EAST COAST OF HONSHU, JAPAN

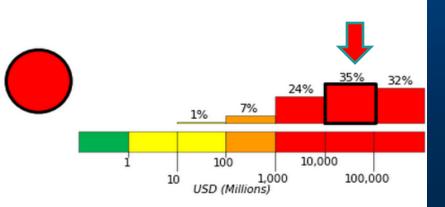
Alert level does not include impacts from earthquake-related hazards such as tsunamis, landslides, fires or liquefaction.

Earthquake Shaking Alert Level: RED Download Alert PDF what's this?

Friday, March 11th, 2011 at 05:46:24 UTC (14:46:24 local) Location: 38.3° N, 142.4° E Depth: 29km Event Id: USC0001XGP Alert Version: 15 Created: 22 weeks, 6 days after earthquake. FOR TSUNAMI INFORMATION, SEE: tsunami.noaa.gov.


Alert Information

Actual Fatalites = 20,000 (230 due to shaking) Actual Economic Loss = 200 Billion USD


Red alert for shaking-related fatalities and economic losses. High casualties and extensive damage are probable and the disaster is likely widespread. Past red alerts have required a national or international response. Estimated economic losses are 0-1% GDP of Japan.

Show graphs as tables

Estimated Fatalities

Estimated Economic Losses

Uncertainties in real-time estimates of human losses are a factor of two, at best. And the size of the most serious errors can be an order of magnitude.

They can be generated by hypocenter errors, incorrect data on building stock, and magnitude errors, especially for large earthquakes.

The reduction of the uncertainties inherent in the basic ingredients of earthquake loss assessment is an important issue that needs to be tackled in the future for viability and reliability of rapid loss assessments.

Improvement in the speed and quality of moment tensor information, including estimates of rupture direction and fault finiteness, will be needed for refining loss estimates especially in regions without dense local seismograph networks.

It is believed that the increasing number of scientific studies, outcomes of the relevant EU projects (such as NERIES, SAFER, NERA and REAKT), ongoing refinements in PAGER methodologies, as well as the expected achievements of the Global Earthquake Model project will provide the correct directions and developments in this regard.

