

Seismic Hazard Assessment Methodologies for Turkey

Mine B. Demircioglu

Karin Şeşetyan and Mustafa Erdik

SciNetNatHazPrev - PROJECT WORKSHOP MARCH 13-14, 2014

ISTANBUL, TURKEY

VENUE: MAÇKA SOCIAL CENTER, ISTANBUL TECHNICAL UNIVERSITY FOUNDATION

C T	Aim a purpose	nd The aim of the joint Action is to share re	sources and competencies for		GROUP OF ACTIVITIES 1		
I V	(general description	environmental protection resulting from earthquake, landslide f hazards. Another basic aim of the Joint Action is to establisi	iction is to establish a strong		Name	Current Status Assessment	
 T F	the GA)	sustainable development. In this perspective basis for a scientific network regarding ea prevention.	e it is essential to set a sound rthquake, landslide and flood		Responsible partner(P): IPA Partner	Bogazici University, Turkey	
S		The aim of GA1 ban be summarized in the fo	llowing items:		Involved partners		
1		a. recording of the existing legislation framew	nework in every one of the				
		participant countries regarding landslide, earthquake and flood hazard			Partner IPA:	Bogazici University, Turkey	
		b. review of the available bibliography	(existing projects, relative		Partner Applicant (LP):	Technological Education Institute of Serres, Greece	
		publications, registered events) regard	ing seismic hazard, landslide		Partner no 1:	Democritus University of Thrace, Greece	
		in order to achieve a common base of	data and state of art or/and		Partner no 2:	Earthquake Planning and Protection Organization (EPPO) - Thessaloniki's Branch / Former Institute of Engineering Seismology and Earthquake Egineering (ITSAK) - Greece	
		c. evaluation of existing models and me	inodologies assessing seismic,	G	Partner no 3:	University of Burgas, Bulgaria	
		demands and credibility of produce	ed results Therefore the	R	Partner no 4:	"Ovidius" University of Constanta, Romania	
		aforementioned hazard assessment model	s will be modified, adapted, or ding to the local conditions in	U	Partner no 5:	Institute of Electronic Engineering and Nanotechnologies "D. Ghitu", Academy of Sciences of Moldova, Moldova	
		order to assess hazards at a regional scale		P	Partner no 6:	Black Sea (Odessa) Branch of Ukrainian Environmental Academy of Science, Ukraine	
		GA1 will provide the necessary base for sci of technical kwoledge with regard to the ab	entific exchange and transport pove hazard assessment, taking	of A	Applicant:	TECHNOLOGICAL EDUCATION INSTITUTE of SERRES, GREECE	
		into account the experience and expertise of	each partner.				
		Activities description	Partners involved				
		Further of anishing anismic barrand		-			
Acti	vity 9:	Evaluation of existing seismic nazard	Partner P2 will evaluate				
	-	assessment models in terms of	models used in Greece and al	lso			
		scientific soundness, data demands	he will coordinate all partner	rs'			
		and result credibility.	deliverables and evaluation of	of			
		Widely seconted existing barried	the most successful and				
		where accepted seismic nazard	efficient models according to	0			
		assessment models will be evaluated the data provided by the in the proposed areas of the project, of the partners.					
		in order to define the most	models used in Turkey with	<i>,</i>			
		appropriate; theoretical results will	local data	'			
		be contronted to empirical data	LP, IPA, P1, P3, P4, P5 and Pi	6:			
		collected per country, as a consequence of seismic events	data providers to P2				

The aims of workshop are:

- to evaluate methodologies that may be used to assess <u>Earthquake</u>, Landslide and Flood Hazards in order to assess the most reliable way to estimate those hazards.
- To select seismic hazard assessment methodologies applied to specific national case studies
 Periopal Scalet Marmara Periop
- Regional Scale: Marmara Region
- ISTANBUL
- TEKİRDAĞ
- Local Scale:
- SAMSUN

Seismic Hazard Analysis

Step of the analysis (1) Definiton of the seismic sources (2) earthquake recurrence characteristics for each source, (3) GMPEs with magnitude and distance, and (4) ground motions for specified probability of exceedance levels (calculated by summing probabilities ovel all the sources, magnitude and distances) Step of the analysis (1) Definiton of the seismic sources (2) selection of a source to site distance parameter for each source zone, (3) Selection of the controlling earthquake (GMPEs with magnitude and distance), and (4) Definition of the hazard at site in terms of the ground motions produced at the site by the controlling earthquake.

Seismic Hazard Assessment: For the Source Model:

Tectonic Settings The most prominent models are the "pull apart" model (A) proposed by Armijo et al. (2005) and the "single fault" model (B) proposed by Le Pichon et al. (2003).

Seismic Hazard Assessment: <u>For the Source Model:</u> Distribution of Seismicity

Seismic Hazard Assessment: <u>Two</u> Source Model for <u>Marmara Region:</u>

Seismic Hazard Assessment: Source Model for Turkey

The seismic source zonation model of Turkey developed within the context of a project conducted for the Ministry of Transportation Turkey, aiming the preparation of an earthquake resistant design code for the construction of railways, seaport and airport. (DLH, 2007)

□ The earthquakes with magnitude > 6.5 are assumed to take place on the linear zones (Purple line), whereas the smaller magnitude events associated with the same fault are allowed to take place in the surrounding larger areal zone(Green Line).

□ In addition to linear and areal source zones, background seismicity zones are defined to model the floating earthquakes that are located outside these distinctly defined source zones and to delineate zones where no significant earthquake has taken place.

Seismic Hazard Assessment: Source Model for Turkey

SHARE - Seismic Hazard Harmonization in Europe" (www.share-eu.org) is a Collaborative Project in the Cooperation programme of the Seventh Framework Program of the European Commission.

SHARE's main objective is to provide a community-based seismic hazard model for the Euro-Mediterranean region with update mechanisms. The project aims to establish new standards in Probabilistic Seismic Hazard Assessment (PSHA) practice by a close cooperation of leading European geologists, seismologists and engineers:

For the first time, a Euro-Mediterranean wide model considers three approaches to assess the occurrence of earthquake activity:

•a classic Area Source (AS) Model,

•a model that combines activity rates based on fully parameterized faults imbedded in large background seismicity zones, the Fault-Source & Background (FSBG) Model, and

•a kernel-smoothed model that generates earthquake rate forecasts based on fault slip and smoothed seismicity (SEIFA).

Seismic Hazard Assessment: Source Model for Turkey

Another regional project is EMME "Earthquake Model of Middle East" (www.emme-gem.org), which aims at the assessment of earthquake hazard, the associated risk in terms of structural damages, casualties and economic losses and also at the evaluation of the effects of relevant mitigation measures in the Middle East region in concert with the aims and tools of GEM (Global Earthquake Model). The Project started on April 2009 and will end on September 2013.

A Middle East wide model considers three approaches to assess the occurrence of earthquake activity:

a classic Area Source (AS) Model
 a model that combines activity rates based on fully parameterized faults imbedded in large background seismicity zones, the Fault-Source and various kernel smoothed model and
 a fix kernel-smoothed

- Development of one catalog from several catalogs
- Declustering
- Use of catalog: Calculation of the Gutenberg-Richter "a" and "b" values for the background Assignment of major earthquakes to the segments in the fault segmentation model
- Magnitude Frequency Distributions

Background

- Gutenberg-Richer distribution
- Smoothed seismicity model
 - Accounts for the activity not associated with the main tectonic entities,
 - Assumes that each cell of grid is a potential source for moderately sized events,
 - Kernic Contended Setting And Antician Setting And Antician Setting Anticia
 - \times A Gaussian smoothing function with a correlation distance of 50 km is used

Ruptures along well defined from the length of the segment,

- Characteristic distribution
 - Maximum magnitude determined from the length of the segment,
 - Return period determined by the moment of the characteristic earthquake and the moment rate of the segment.

Three probability density function on magnitude f(m) are currently used in the literature:

- (a) The truncated exponential model (GR) based on the results of Gutenberg and Richter (1944), with a lower and upper magnitude cut-off.
- (b) The maximum magnitude model (CE) based on seismological data compiled by Schwartz and Coppersmith (1984) and Wesnousky (1994), which suggests that some individual faults and fault segments tend to repeatedly generate earthquakes of comparable magnitudes

The definition of the magnitude probability density for characteristic earthquake model

The earthquake recurrence model for the fault segments

Poisson Model

- characteristic earthquake recurrence is assumed,
- probability of occurrence of the characteristic event does not change in time
- The annual rate is calculated as:

R=1/ mean recurrence interval

Time Dependent (Renewal model)

- the probability of occurrence of the characteristic event increase s as a function of the time elapsed since the last characteristic event,
- A lognormal distribution with a coefficient of variation of 0.5 is assumed to represent the earthquake probability density distribution.
- The annual rate is calculated as:

```
Reff=-In(1-Pcond) / T
```

* Time dependent (Renewal) Model

considers the time since the last event in estimating the probability of future events

- by using this model, the occurrence of large earthquakes is assumed to have some periodicity
- Conditional probability calculated based on the mean recurrence interval of the characteristic earthquake, the elapsed time since the last major earthquake and the exposure period (taken as 50 years)

Sensitivity of the time dependent probabilities for a renewal model with 50 and 5 year exposure periods (After Abrahamson, 2000).

Calculation of conditional probability from a probability density function

ESTIMATION OF THE SOURCE SEISMICITY PARAMETERS AND PROBABILISTIC MODEL for (Time-dependent method - the Marmara region)

						Time de	ependent
						(Ren	ewal)
	Last		Mean		Time		
	Char.	CO	Recurrenc	Char.	since Last	50year	Annual
Segment	Eq.	V	e Time	Magnitude	Char. Eq.	Prob.	Rate
1	1999	0.5	140	7.2	6	0.0344	0.0007
2	1999	0.5	140	7.2	6	0.0344	0.0007
3	1999	0.5	140	7.2	6	0.0344	0.0007
4	1999	0.5	140	7.2	6	0.0344	0.0007
5	1894	0.5	175	7.2	111	0.3723	0.0093
6	1754	0.5	210	7.2	251	0.4095	0.0105
7	1766	0.5	250	7.2	239	0.3374	0.0082
8	1766	0.5	250	7.2	239	0.3374	0.0082
9	1556	0.5	200	7.2	449	0.4191	0.0109
10	-	0.5	200	7.2	1000*	0.3340	0.0081
11	1912	0.5	150	7.8	93	0.4206	0.0109
12	1967	0.5	250	7.4	38	0.0203	0.0004
13	-	0.5	600	7.4	1000*	0.1771	0.0039
14	-	0.5	600	7.4	1000*	0.1771	0.0039
15	-	0.5	1000	7.2	1000*	0.0974	0.0020
19	1944	0.5	250	7.9	61	0.0597	0.0012
21	1999	0.5	250	7.2	6	0.0012	0.0000
22	1957	0.5	250	7.2	48	0.0347	0.0007
25	-	0.5	1000	7.2	1000*	0.0974	0.0020
40	1855	0.5	1000	7.5	150	0.0006	0.00001
41a			1000	7.2			0.0020
41b	-	0.5	1000	7.3	1000*	0.0974	0.0020
42	-	0.5	1000	7.2	1000*	0.0974	0.0020
43	1737	0.5	1000	7.5	268	0.0086	0.0002
44	-	0.5	1000	7.2	1000*	0.0974	0.0020

Renewal model characteristic earthquake parameters associated with the segments.

*

Date of the last characteristic earthquake is unknown.

ESTIMATION OF THE SOURCE SEISMICITY PARAMETERS AND PROBABILISTIC MODEL for time-independent model (Turkey)

N is the number of the earthquakes above the magnitude M in a given region and within a given period "a " and "b" are regression constants.

*

 $\log N = a + b M$

step	2:	RE	CU	RF	RE	NCE
10000						

🕂 Table 1. Source Zone Information						
	ZONE	FAULT NAME	MECHANISM**	а	b	M _{min} - M _{maks}
	Z04	<u>Chalkidiki</u>	Normal	2.7	0.6	5.0 - 7.0
	Z10	NAF (Aegean Sea)	RLSS + Normal	6.5	1.2	5.0 – 7.8
	Z11	Sisam	Normal	2.6	0.8	5.0 – 7.6
	Z12	Cyclades	Normal	3.2	0.7	5.0 - 7.2
	Z13	Hellenic Arc	Deep Earthquake Subduction Zone	5.7	1.1	5.0 - 8.3
	Z14	Sakiz (Chios) Fault	Normal	3.8	0.9	5.0 – 7.0
	Z15	Midilli (Lesbos) Fault	Normal	4.5	1.0	5.0 – 6.8
	Z16 OZ	NAF (Marmara Sea,	RISS + Normal	50	0.0	5.0 – 6.9
	Z16 IL	Northern Strand)	RESS + NUCHAR	5.5	0.9	7.0 – 7.9
	Z17 OZ	NAF (Southern Strand in	RLLS and Normal Segments	47	0.9	5.0 – 6.6
	Z17 IL	Marmara region)		4.7		6.7 – 7.4
	Z18 OZ			4.3	1.0	5.0 - 6.6
	Z18 IL	Eskişenir Fault	RLSS + Normai			6.7 – 7.0
	Z19	Kütahya Fault	Normal	3.8	1.0	5.0 - 5.8
	Z20 OZ	Bargama Ecca Faut	2211	20	0.8	5.0 – 6.6
	Z20 IL	bergania_roça radı.	LLSS	5.0		6.7 – 7.0
	Z21 OZ	Simav-Sultandağ Fault	Normal and	<i>E</i> 4	1.1	5.0 - 6.9
	Z21 IL	System	Reverse	5.4		7.0 - 7.3
	Z22 OZ	Codia Fourt	blormel	4.0	0.9	5.0 - 6.9
	Z22 IL	Gediz Fault	Normai			7.0 – 7.3
	Z23 OZ	Mondoroo Foult	News at	4.1	1.0	5.0 – 6.8
	Z23 IL	Menueres Fault	Norman			6.9 - 7.6
	Z24	Muğla-Yatağan Fault	Various (Strike Slip, Normal)	4.8	1.1	5.0 – 6.8
	Z25 OZ	Cäkoup Fout	blewe el	5.3	4.0	5.0 – 6.8
	Z25 IL	Gokova Fault	Norman		1.0	6.9 – 7.8
	Z26	Hellenic Arc	LLSS + Normal	6.0	1.2	5.0 - 6.7
	Z27 OZ	Fothing Dundun Fourt		5.0	1.0	5.0 - 6.8
	Z27 IL	Feiniye-Durdur Fault	LLSS +NORMALI			6.9-7.4
	Z28	Antalya Fault	Strike Slip	5.6	1.2	5.0 - 7.0

Z29	Cyprean Arc-Florence Rise	Various (Strike Slip, Thrust)	5.9	1.3	5.0 - 5.9				
Z30	Cyprean Arc-Trodos Mount.	Various (Strike Slip, Thrust)	4.8	1.0	5.0 – 6.8				
Z31	Hecataeus Ridge-region name-	Undefined	3.4	0.8	5.0 - 6.6				
Z32	Cyprus Trough	Strike <u>Slip+Thrust</u>	2.7	0.7	5.0 - 6.8				
Z33	Black Sea Fault	Thrust and Normal?-	3.8	0.9	5.0 - 7.3				
Z34 OZ	North Anatolian Fault	RICC	5.0	0.0	5.0 - 6.7				
Z34 IL	Zone(NAF)	NE33	3.0	0.0	6.8 – 7.9				
Z35 OZ	Alaca Ezinenazarı Fault	RISS	32	0.8	5.0 - 6.7				
Z35 IL	Alaca Ezinepazan Fault	RE33	J.2		6.8 – 7.9				
Z36 OZ	Tuz Lake Fau#	RISS	29	0.8	5.0 - 6.7				
Z36 IL	TUZ Lake Fault	RLSS	2.9		6.8 – 7.9				
Z37 OZ	Ecorpia Fault	2211	20		5.0 - 6.7				
Z37 IL	Eceniis Fault	LLSS	3.8	0.3	6.8 – 7.9				
Z38	Adana Region Fault Zone	LLSS	3.1	0.8	5.0 - 7.0				
Z39 OZ	Coksup Fault	2211	27	0.7	5.0 -6.9				
Z39 IL	Goksann auit	LLSS	Z.r		7.0 – 7.5				
Z40	Dead Sea Fault	LLSS	4.7	0.9	5.0 - 7.7				
Z41 OZ	Dee See Hatey Foult	LLCC , Normal	36	1 0	5.0 - 6.7				
Z41 IL	Dea Sea-Malay Fault	LL33 (190).((19)	5.0	1.0	6.8 – 7.9				
Z42 OZ	East Apstolian Fault (FAF)		46	0.0	5.0 - 6.7				
Z42 IL	East Anatonan Fault (EAF)	LLSS	4.0	0.3	6.8 - 7.9				
Z43 OZ	Bitlis Zagros Fault Zopa	Thrust	47	1.0	5.0 – 6.6				
Z43 IL	Dittis, Zadros Fadic Zone	miliast	4.0		6.7 - 7.0				
Z45	Araxis Fault	LLSS	4.2	1.0	5.0 - 7.8				
Z46	North East Anatolian Fault	LLSS	5.6	1.1	5.0 - 7.7				
Z47	Pambak Sevan Fault	RLSS and Thrust	3.9	0.9	5.0 - 7.3				
Z48	NW Fault System	RLSS	4.4	1.0	5.0 - 7.3				
*07.0	Z: Outer Areal Zone, IL: Inner Linear Zone								

*OZ: Outer Areal Zone, IL: Inner Linear Zone

**RLSS: Right Lateral Strike Slip, LLSS: Left Lateral Strike Slip

* GROUND MOTION PREDICTION EQUATIONS

- GMPEs are used in earthquake hazard assessments predict ground motion parameters (such as peak ground acceleration -PGA; peak ground velocity -PGV and spectral accelerations -SA) as a function of source parameters (magnitude and fault mechanism), propagation path (fault distance) and site effects (site class). Site classes are generally based on shear wave velocity of soil media or code-based site class descriptions, such as NEHRP (2003). In almost all attenuation relationship studies the strong ground motion parameters are assumed to have a log-normal distribution and a random error term is provided with zero mean and a standard deviation
- Next Generation attenuation relationships (NGA, 2008):
 - Boore and Atkinson (updating Boore at.al., 1997 model)
 - Campbell and Bozorgnia (updating their 2003)
 - Chiou and Youngs (updating Sadigh et.al., 1997 model)
 - Abrahamson and Silva (updating Sadigh et.al., 1997 model))
 - Idriss (2008)

Regional GMPEs:

- * Ulusay et al. (2004)
- * Kalkan and Gulkan (2004)
- * Ozbey et al (2004)
- * Akkar and Cagnan (2010)
- * Akkar, Sandikkaya and Bommer (2012) etc..

For the Marmara region, the average of the results obtained from Boore, et al., (1997), Sadigh et. al.(1997) and Campbell (1997) attenuation relationships for the computation of Peak Ground Acceleration and the average of Boore et al., (1997) and Sadigh et. al.(1997) attenuation relationships for the computation of Spectral Accelerations at 0.2s and 1s (Ss and S1) have been used.

In the DLH code, , The average of the results obtained from Boore, et al., (1997), Sadigh et. al.(1997) and Campbell (2003) attenuation relationships for the computation of PGA, and spectral accelerations have been used.

PGA map for 2% PE in 50 years

Time-independent model (from the study of DLH, 2007) - PGA, 475 yrs http://www.koeri.boun.edu.tr/YayInlar/YonetmelIkler_4_12.depmuh

CROSS BORDER

SHARE PROJECT: <u>http://www.share-eu.org/</u> Please visit EFEHR at <u>www.efehr.org</u>.

EMME PROJECT: http://emme-gem.org/

DEAGGRAGATION OF SEISMIC HAZARD

Probabilistic seismic-hazard deaggregation involves determining earthquake variables, principally magnitude, distance and values of other random variables defining seismic events that contribute to a selected seismic-hazard level (McGuire, 1995; Bazzurro and Cornell, 1999).

The hazard at a specific level of the ground motion parameter at a site (SA(T)) and for a given source can be deaggregated with respect to contributions by magnitude (M), distance (R) and an error term (socalled, Epsilon) in terms of their probability distributions (i.e. probability densities against M, R and e).

Epsilon is defined as the number of standard deviations by which an observed logarithmic spectral acceleration differs from the mean logarithmic spectral acceleration of a ground-motion prediction (attenuation) equation. $\mathcal{E}(SA_0(T)) = \frac{\ln(SA_0(T)) - \ln(\mu)}{\sigma}$

DEAGGRAGATION OF SEISMIC HAZARD

The results of the hazard deaggregation in terms of mean and modal values of magnitude, M, distance, D, and epsilon, E, for peak ground acceleration (PGA) and the 5%-damped spectral acceleration, SA(T), for periods of 0.2s, 1s, 6s and 10s corresponding to the average return periods of 72, 475 and 2475 years (associated respectively for 50%, 10% and 2% probabilities of exceedance in 50 years) for points at 10, 20 30 and 40 km from the causative fault for the Asian and European side of Istanbul respectively.

DEAGGRAGATION OF SEISMIC HAZARD

From these tables the following summary table (Table 2) can be created for the modal Epsilon values for PGA (SA(0.2)) and SA(1s) corresponding to 72, 475 and 2475 year average return periods. The modal value for the magnitude is Mw=7.25.

TABLE 2 Average Return Period (Vears)	Ground Motion Parameter	Fault Distance						
(Tears)		10km	20km	30km	40km			
72	PGA	-0.5	-0.1	0.3	-0.1			
	SA(1s)	-0.3	-0.1	0.5	0.5			
475	PGA	1.1	1.2	1.4	1.2			
	SA(1s)	1.4	1.3	1.5	1.5			
2475	PGA	1.9	2.0	1.9	1.9			
	SA(1s)	1.9	2.1	2.1	2.2			

The average Epsilon values are respectively 0.0, 1.4 and 2.0 for the 50%, 10% and 2% probabilities of exceedance in 50 years (Could be lower for Poisson Model)

50%/50 earthquake has an average return period of 72 years, roughly corresponding to that of the expected "Istanbul" earthquake.

Deterministic Scenario Earthquake for Marmara Region

* Deterministic Scenario Earthquake for Marmara Region

* Earthuake Risk Assessment for Samsun (BU& AFAD - Republic of Turkey Prime Ministry Disaster% Emergency Presidency) - Tectonic structure & Active fault

inactive paleotectonic (thrust) faults

active Neotectonic (strike-slip) faults

major earthquake (strike-slip) faults

1939 date of major shock

SAMSUN

DESTEK (1942)

TOSYA-ERBAA (1943)

ERIKI

EKINVERE

BALIFAKI

Kaymakçı, 2009

-KELKIT (1939)

Senario 1 - 26 November 1943 LADİK EQ. Ms =7.2; Mw7.6

Senario 1

THANK YOU FOR YOUR ATTENTION...

SciNetNatHazPrev - PROJECT WORKSHOP

MARCH 13-14, 2014 ISTANBUL, TURKEY

VENUE: MAÇKA SOCIAL CENTER, ISTANBUL TECHNICAL UNIVERSITY FOUNDATION