

Hydrology and Hydraulic Modeling for Flash Floods Risk Assessment and Mapping

A Methodology Proposal

Konstantinos Papatheodorou Eleni A. Tzanou Konstantinos Ntouros

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

18/03/2014

Common borders. Common solutions.

Flash Flood Assessment From Regional to Local Scale

- Hydraulic models are used to calculate on a local scale, all flood related parameters
- Flood Hazard and Disaster Risk may be "accurately" assessed-as possible
- **AIM** = Spot Problematic areas according to the hydraulic analysis performed

ΤEI

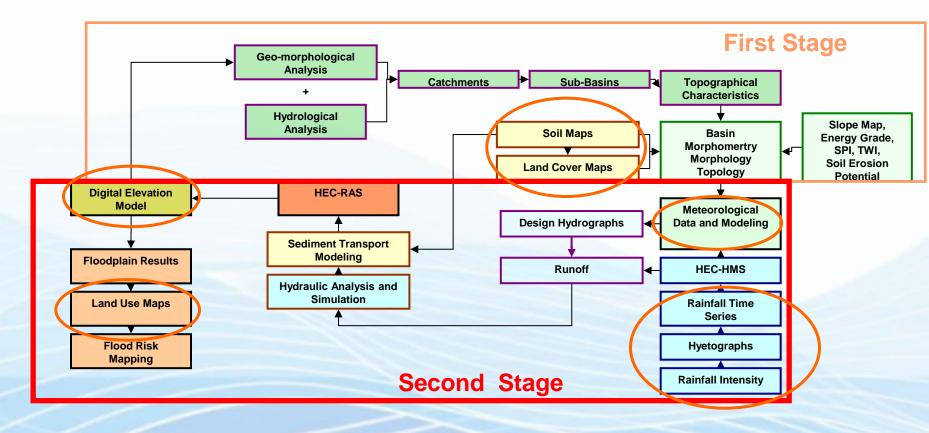
The procedure has been implemented in the area of Serres (Kentriki Makedonia)

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying OF CENTRA ACEDONIA Engineering Department, Greece.

Common borders. Common solutions. Methodological Framework

for Flash Flood Hazard (FFH)

- Methodology for FFH is structured (among others) on basic principles of hydrology and hydraulics
- Standardized methodology for flood map production (step by step)
- Use of **Open Source Software**
- Geo-morphological and hydrological features of the river basin
- Calculation of hydrographs for different return periods
- Simulation of the river system-Detailed hydraulic analysis
- Estimation and Mapping of floodplain Inundation


ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

Methodology Flowchart

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

Hydrologic Analysis

- Hydrology analysis aims to determine the design hydrograph for different return periods
- Hydrology Modeling System
- Simulation of the precipitation-runoff processes of dendritic watershed systems.
- Hydrographs produced are used for studies of water availability, urban drainage, flow forecasting, future urbanization impact, reservoir spillway design, flood damage reduction, floodplain regulation, and systems operation.

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

Our proposalHEC-HMS

- Designed by the Hydrologic Engineering Centre, U.S. Army Corps of Engineers
- HEC-HMS 3.5 for Windows, Solaris or Linux

Contains:

- Watershed Physical Description
- Meteorology Description
- Hydrologic Simulation
- Parameter Estimation
- Analyzing Simulations
- GIS Connection

- Use depends on the available data in each case, historical precipitation, time series etc.
- User can determine the mathematical model for analysis

Provide Design Hydrograph and Max Discharge Flow Needed

This software is free, widely used and scientifically accepted. Large documentation on its use and technical background

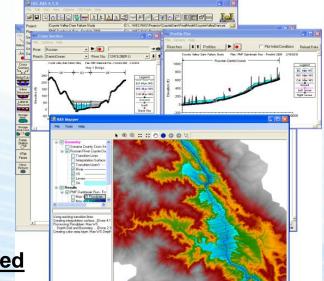
18/03/2014

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

Data production for local scale implementation

- Max Discharge data: Precipitation data, meteorological stations, past event data...but....not always available
- **DEM data**: As accurate as possible ground geometry
 - 1. Digitizing of available Maps of proper scale.....1:500, 1:200
 - 2. Satellite data-elevation data
 - 3. Surveying data in detail containing all structures in stream and surrounding area
- Land use & land cover data, city (urban) plans, places of interest, special structures
- Public network data (sewerage network and its discharge capabitity)
- Socio-economic data for the area of interest

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.



Common borders. Common solutions. Hydraulic Analysis....HEC-RAS

- The main objective of this methodological approach is the determination of the exact characteristics of a possible flood event for **different flood scenarios**.
- Assess the flooding parameters, with HEC-RAS software(River Analysis System, US Army Corps of Engineers - Hydrologic Engineering Center)
- HEC-RAS performs hydraulic calculations for a full network of natural and constructed channels

Capabilities of **HEC-RAS**:

- Hydraulic Analysis
- Data Storage and Management
- Graphics and Reporting
- RAS Mapper
- HEC-RAS 4.1(among others...new Mapper and Sediment Transport Model)

This software is free, widely used and scientifically accepted Large documentation on its use and technical background

18/03/2014

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

Implementation.....so far

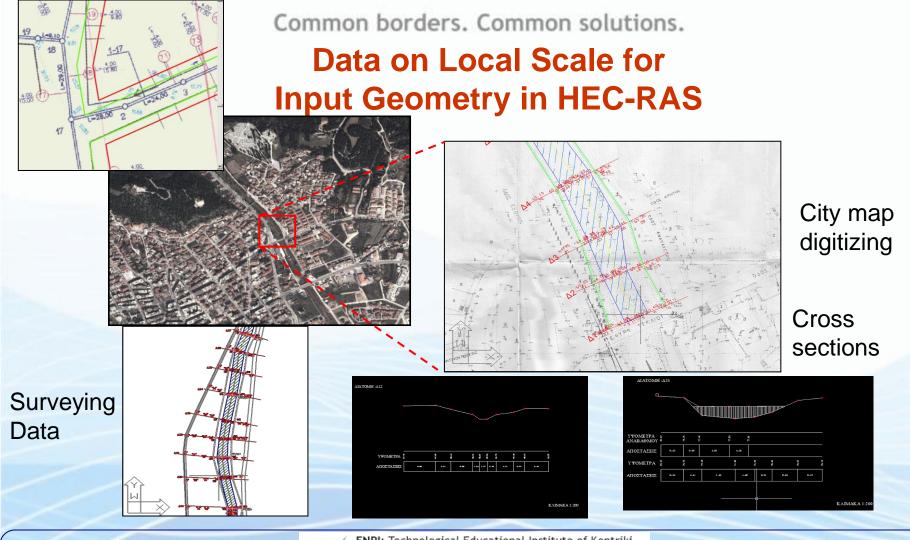
Application steps:

- 1. Preparation, evaluation and synthesis of digital data
- 2. Field work
- 3. Hydrologic analysis through HEC-HMS
- 4. Hydraulic analysis through HEC-RAS
- 5. Flash Flood scenarios and Flood Risk maps

Digital Data produced:

- Contour lines and hydrographic network of 1:5.000 scale maps (HGMS-Hellenic Geographic Military Service),
- Corine Land Cover 2000 data updated by in situ research
- Precipitation data for a period of about 27years (HNMS Hellenic National Meteorological Service) -2 meteorological stations in the area.
- Surveying data of the stream bed and the surrounding area (stream geometry, cross sections, long sections-profile1:200 scale)
- Street and city plan of 1:1000 scale maps.

18/03/2014



ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

18/03/2014

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

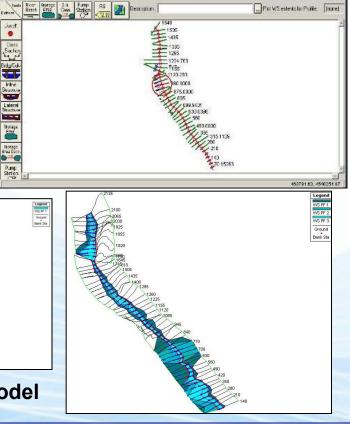
Common borders. Common solutions. Implementation.....so far

Hydrologic Analysis led to the basin

discharge computation (flow and

sediment).		<u>10y</u>	<u>50y</u>	<u>100y</u>
	<u>Flow Discharge (m³/s)</u>	<u>64.50</u>	<u>117.46</u>	<u>240.85</u>
	Sediment Discharge(m ³ /s)	<u>14.15</u>	<u>25.77</u>	<u>52.84</u>

Hydraulic Analysis in HEC-RAS used


the flow and sediment discharge

Results

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)
1	18	PF 1	330.00	142.24	145.08		145.60	0.001906	3.18	103.76
1	17	PF 1	330.00	141.62	144.26	144.26	145.47	0.005135	4.88	67.62
1	16	PF 1	330.00	141.00	143.61	143.61	144.83	0.005194	4.88	67.60
1	15	PF 1	330.00	140.10	143.25	143.25	144.57	0.005031	5.10	64.65
1	14	PF 1	330.00	138.22	141.91		142.69	0.002448	3.91	84.44
1	13	PF 1	330.00	137.54	142.05		142.54	0.001239	3.10	106.52
1	12	PF 1	330.00	136.92	140.82	140.82	142.29	0.005031	5.38	61.39
1	11	PF 1	330.00	136.58	140.30	140.30	141.75	0.005049	5.33	61.88
1	10	PF 1	330.00	136.36	140.12		141.14	0.003284	4.47	73.86

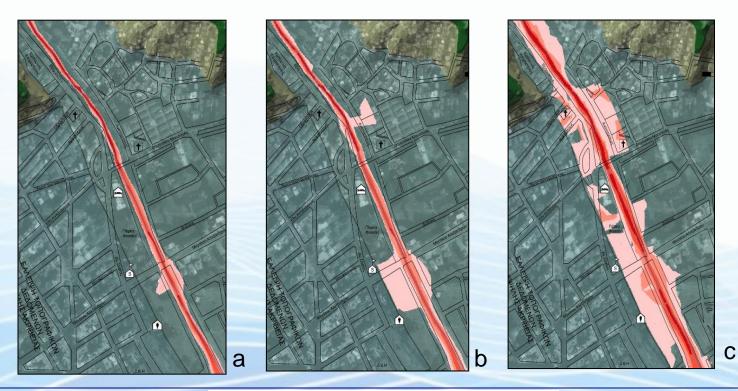
Geometry input

"3-D" flood model

18/03/2014

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

18/03/2014



Common borders. Common solutions.

Flood Risk Mapping....so far

10 (a), 50(b) and 100(c) year return flood period

ENPI: Technological Educational Institute of Kentriki
Makedonia, Civil Engineering & Geomatics & Surveying
Engineering Department, Greece.

OF CENTRAL MACEDONIA SEAMS GALLER

Suggestive Bibliography

- Alexander, D., 1993. Natural disasters, New York, Chapman & Hall
- Balica, S.F., Douben, N., Wright, N.G., 2009. Flood Vulnerability Indices at Varying Spatial Scales, Water Science and Technology Journal, 60 (10), 2571-2580
- Balica, S.F., Wright N.G., 2010. Reducing the complexity of Flood Vulnerability Index, Environmental Hazard Journal, 9 (4), 321 339.
- Barredo, J.I., de Roo, A., Lavalle, C., 2007. Flood risk mapping at European scale. Water Science and Technology, 56 (4), 11-17
- Hansson, K., Danielson, M., Ekenberg, L., 2008. A framework for evaluation of flood management strategies, Journal of Environmental Management 86, (3), 465–480
- Schanze, J., 2006. Flood risk management a basic framework, Flood Risk Management:
- Hazards, Vulnerability and Mitigation Measures NATO Science Series: IV: Earth and Environmental Sciences, 2006, 67, Part 1, 1-20
- Bedient P. B., and W. C. Huber (2002). Hydrology and Floodplain Analysis. Third edition. Prentice Hall. 763 p.
- Floodplain Mapping Program, North Carolina Division of Emergency Management. NC Floodplain Mapping: Watauga River Basin; LiDAR Bare Earth Mass Points, Feb-Apr and Dec 2003; EarthData International of North Carolina: High Point, NC, USA, 2004.
- US Army Corps of Engineers. HEC-RAS River Analysis System, User's Manual; U.S. Army Corps of Engineers, Hydrologic Engineering Center, Institute for Water Resources: Davis, CA, USA, 2010.
- Johnson, L.E. 9: GIS for Floodplain Management. In Geographic Information Systems in Water Resource Engineering; Taylor and Francis, LLC: Boca Raton, FL, USA, 2009; pp. 187–206.
- Hicks F. E. and Peacock, T. (2005), Suitability of HEC-RAS for Flood Forecast-ing, Canadian Water Resources Journal Vol. 30(2): 159–174
- MHL (2006), Review and Assessment of Hydrologic/Hydraulic Flood Models, Department of Natural Resources, New South Wales, ISBN 0 7347 5854 5, pp. 47-69.

18/03/2014

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.

Thank you!

Acknowledgments: The research was partially funded by the EU within the context of the Black Sea Basin Joint Operational Programme 2007-2013

ENPI: Technological Educational Institute of Kentriki Makedonia, Civil Engineering & Geomatics & Surveying Engineering Department, Greece.