

Flood Hazard and Risk Mapping through the Romanian participation Projects: Danube FLOODRISK, e-LAC, VULMIN

Danube Floodrisk

Stakeholder oriented flood risk assessment for the Danube floodplains

PhD Prof. Mary-Jeanne ADLER, Scientific Director

Jointly for our common future

Subject of presentation:

- Short wrap-up statistical method(BEAM) from Danube Floodrisk Projects review - large scale solution
- 2. Pilot activities detailed analysis of demand of protection
- 3. Decision Support System for floodrisk management in case of reservoirs cascades e-LAC
- Stakeholders needs and societal vulnerability –VULMINproposing simplified methods for hazard identification (geomorphogical analysis)

Conclusion for Damage assessment for Danube Floodrisk Project

Requirements:

- Comparability of results all along the Danube
- Availability of input data
- To be displayed at a scale of 1: 100 000

WP6 MAPS

WP3

HARM

outline

Manual of harmonized

on the flood mapping procedures for the Danube River DATA AND METHODS

requirements

FLOOD HAZARD MAP

DIRECTIVE 2007/60/EC, CHAPTER III, Article 6:

3. Flood hazard maps shall cover the geographical areas which could be flooded according to the following scenarios:

- (a) floods with a low probability, or extreme event scenarios;
- (b) floods with a medium probability (likely return period \geq 100 years);
- (c) floods with a high probability, where appropriate.
- 4. For each scenario referred to in paragraph 3 the following elements shall be shown:
- (a) the flood extent;
- (b) water depths or water level, as appropriate;

(c) where appropriate, the flow velocity or the relevant water flow.

- Hazard and risk mapping
- Damage and risk assessment •

How to calculate the inundation?

- 1. Generate a flood event of a given probability
 - Statistical method $\rightarrow Q_{33\%}, Q_{1\%}, Q_{0.1\%}$ (Annual Maximum Series)
 - Generate a flood wave of a given (33%, 1%, 0.1%) probability
 - Based on simulated daily discharges or
 - Synthetic floods based on clustering of registered floods

Generate a flood event of a given probability

How to calculate the inundation?

- 1. Generate a flood event of a given probability
 - Statistical method $\rightarrow Q_{33\%}, Q_{1\%}, Q_{0.1\%}$ (Annual Maximum Series)
 - Generate a flood wave of a given (33%, 1%, 0.1%) probability
 - Based on simulated daily discharges or
 - Synthetic floods based on clustering of registered floods
- 2. Calculate the inundation
 - Steady state backwater curve calculation (1D or 2D)
 - Unsteady flood wave transformation (1D or 2D) and dyke breach simulation

Damage assessment

Search of existing methods (assets and damage functions):

- Atlases of Rhine, Elbe, Odra
- EU FP6/FP7-projects
- National methodologies/studies

Decision:

- Usage of BEAM-methodology, developed in FP7-project SAFER
- Methodology is a advancement of the existing atlases
- Synergies between projects as SAFER had test areas in Romania/Bulgaria
- Use of existing damage functions, adaptations were necessary
- TRAINING IN USING DAMAGE FUNCTIONS, ROME 29-30 MARCH

Damage assessment

Assumptions:

- Only direct assets (tangible)
- Net concept (no restoration costs or insured assets)
- No costs of ground included
- No external planning costs included (i.e. building permits)
- Population to be located at place of living

Assets calculation: processing

Assets map: scale

	Makro-scale < 1: 100 000	Meso-scale	Micro-scale > 1: 10 000
Land use	CORINE land cover, global vector data sets	Enhanced EO-data, national data sets	Catastre
Socialeconomic data	Eurostats and national statistics	Regional and community statistics	Field data acquisition, geomarketing data
Damage functions	Synthetic functions (Event analysis, expert knowledge)	-	Field data acquisition

Damage assessment calculation

Assets map: available output layers

Settlement		Pre- dominant Land Use	Damage Potential Class	r	g	Ь	С	Μ	Y	K	
population			high	192	91	117	25	64	54	0	
Cottlement			medium	201	133	150	21	48	41	0	
mobile	Settlement immobile	Settlement immobile		low	244	143	169	4	44	34	0
(nousenoid)	(buildings)	Settlement/	high	237	28	36	7	89	68	0	
Vehicles:	Vehicles:	Residential	medium	247	160	132	3	37	48	0	
cars	cars motorcycles		low	252	210	193	I	18	24	0	
	_	Forestry/	high	255	229	54	0	10	79	0	
		Agriculture	low	255	247	143	0	3	44	0	
		Others	high	152	230	0	40	10	100	0	
			low	209	255	115	18	0	55	0	

Application of selected of damage functions

- Set of one damage function per assets layer
- Automation of calculation process

CalBEAM_py 0 df_build (118, geomer BEAM) BEAM_put 0 df_vehic (120, geomer BEAM) BEAM_put 0 df_nav_agr (121, geomer BEAM) Bit Double FEI OODBISK/Dataustrialdamapelassets at shp 0 df_levest (124, geomer BEAM)
S* CalBEAM_py 90 df_build (118, geomer BEAM) BEAM_put 0 df_vehic (120, geomer BEAM) BEAM_py 0 df_nav_agr (121, geomer BEAM) BEAM_py 0 df_nav_agr (121, geomer BEAM)
St CalBEAM_py BEAM_put BEAM_put CalBEAM_py BEAM_input CalBEAM_py Bit Am_input Bit Am_input
S* CalBEAM_py 80 dveril((120, geomer BEAM)) BEAM_nput CalBEAM_py df_nav_agr (121, geomer BEAM) BEAM_nput Gliberatustrisidamanelassets at shn Gliberatustrisidamanelassets at shn
BEAM_input CalBEAM_py E:\DarubeEI OODRISK(Datau\utrialdamane\assets at shn CalBEAM_py
waterievel
F:\DanubeFLOODRISK\DetaAustria ETRS89(wt1000_r C
Work Eilanuher OORTSK/Dataustrialdanane A 60 - df_build incl. Clay build (134, geomer BEAM)
ti di
30
20
0 05 1 15 2 25 3 35 4
water depth [m]
OK Cancel Environments < <hide help="" help<="" td="" tool=""></hide>

Identify from:	<top-most layer=""></top-most>	-
		V
Location:	4,640,942.504 2,807,460.698 M	leter ³
Field	Value	
LABEL_LN	Discontinuous urban fabric	
POPDENSITY	0.001766	
BUILDING	53.918741	
HOUSEHOLD	21.875188	
VEHICLES	10.78002	-
NAV_AGRICU	4.305829	
NAV_INDUST	20.783751	
NAV_SERVIC	68.350704	
LIVESTOCK	0.670053	E
SIT_AGRICU	0.086117	2.58
SIT_INDUST	6.235125	
SIT_SERVIC	3.317475	
FIX_VALUE	0	
TOTAL_SQM	190.323004	
TOTAL EURO	570945847.326329	-

WP6 MAPS

Additional risk information

- Effected population (one • symbol per NUTS 2 or 3 region)
- Elements at risk •
- Dikes •
- Natural reserve areas • (if too large to be displayed by symbol)

Hospitals (human health)	
Airport	
Main train station	
Cultural heritage 🔛	or
Nature protection sites	
Industrial sites and waste water treatme plant (IPPC)	ent

Symbol	Class	r	g	b	С	Μ	Y	К
\sim	dikes designed for floods < HQ ₁₀₀	221	236	204	13	7	20	0
	main dikes designed for floods ≥ HQ100	106	178	28	58	30	89	0

2. PROTECTION DEMAND MAP (Meso scale-Micro scale)

Methodology for pilot activities – meso and small scale

- accordance with FLOOD DIRECTIVE (2007/60/EC)
- CROSSING THE INFORMATION coming from:
 - □ EXISTING LAND COVER FEATURES (Corine LC Maps) with
 - PLANS OF FUTURE LAND DEVELOPMENT (General Land Use Plan, in Romanian "Plan de Urbanism General", referred to as "PUG")
 - PLANS FOR FLOOD PROTECTION OF LOCALITIES (Contigency Plans) emergency situations management.

Flood hazard mapping

V...... [m/s]

1 km

EUROPEAN UNION

Veszélyeztettség kicsi

> közepes nagy nem önti el

> > DUNA

"C" szakadás 2+150 tkm

and on the highest local source of borot

Based on the highest local source of hazard

FLOOD HAZARD MAP

FLOOD HAZARD LEVEL

DISCARGE	DIRECTIVE 2007/60/EC SCENARIOS		
QTr _{20 y}	floods with a high probability		
QTr _{100 y}	floods with a medium probability (likely return period ≥ 100 years)		
QTr _{200 y}	floods with a low probability, or extreme event scenarios	FLOOD HAZARD LEV PROTECTION	EL RELATED TO DEMAND
		FLOOD EVENT COMPATIBLE	PROTECTION DEMAND
		whatever	MODERATE
		> QTr _{20 y}	MEDIUM
		> QTr _{100 y}	HIGH
		> QTr _{200 y}	VERY HIGH

Land cover polygons are subdivided into four main classes, according to their safety demand with respect to the flooding risk

PROTECTION DEMAND

Special Destination Terrains

Due to their intrinsic vulnerability Special Destination Terrains (TDS, Terenuri cu Speciala) Destinatie classified were as subject to **VERY HIGH** protection demand (from flooding risk).

EXISTING Urban Fabric, Industries and Trade/Services Areas were classified as subject to a <u>HIGH</u> protection demand..

...whereasthecorrespondingPLANNED(PUGs)artificiallandcovercategorieshavebeenclassifiedassubjecttoMEDIUMprotectiondemand.

Existing Urban Industrial Platforms & Urban Expansion

On average, according to the PUGs forecasts , **56%** of the municipal **territories** comprised within the Pilot Area would be covered by artificial surfaces (omitting the existent).

It would be an impressive burden to the landscape carrying capacity, and a serious threat to the flooding safety of the area.

Suggested Future Strategy

It would be wise <u>individuating in a more precise way</u> – within the General Urban Plans (PUG) – areas of urban growth (expansion), keeping in mind the <u>extent of the</u> <u>surfaces</u> potentially <u>subject to flooding</u>.

FI OOD EVENT COMPATIBLE	PROTECTION DEMAND	DISCARGE	DIRECTIVE 2007/60/EC SCENARIOS		
		QTr _{20 y}	floods with a high probability		
whatever	MODERATE	OTr	floods with a medium		
> QTr _{20 y}	MEDIUM	QTT _{100 y}	period ≥ 100 years)		
> QTr _{100 y}	HIGH	OTr	floods with a low		
> QTr _{200 y}	VERY HIGH	QT1200 y	event scenarios		

FLOOD RISK LEVEL

	FLOODING PROBABILITY							
PROTECTION DEMAND	whatever	high	medium	low	none			
MODERATE	-1	0	+1	+2	+2			
MEDIUM	-2	-1	0	+1	+2			
HIGH	-3	-2	-1	0	+1			
VERY HIGH	-3	-3	-2	-1	0			
worse FLOOD RISK CONDITIONS					better			
+ REPRESENT A SURPLUS OF FLOOD RISK CONDITIONS								

- REPRESENT A DEFICIT OF FLOOD RISK CONDITIONS

PROTECTION DEMAND:

High = 100 years Very high = 200 y€ **FLOOD RISK** LEVEL:

Flood Management through Reservoirs (e-LAC - Pro-active operation of cascade reservoirs)

Follow-up project

Danube Floodrisk

Stakeholder oriented flood risk assessment for the Danube floodplains

Jointly for our common future

	Reservoir	River	Height	Volume	Area	Hydropower	
			(m)	(mill.m ³)	(ha)		
						Tailwater (m)	Capacity (MW)
1	Vidradu	Arges	166	465.0	1000	314	15
2	Oiesti	Arges	20	1.7	42	465	15
3	Cerbureni	Arges	18	1.6	35	425	15
4	Curtes de Arges	Arges	19	1.4	26	394	15
5	Zigoneni	Arges	29	13.3	165	339	15
6	Valcele	Arges	35	54.8	640	525	220
7	Budeasa	Arges	33	54.9	643	285	15
8	Bascov	Arges	21	5.3	140	264	15
9	Rausor	Targului	120	60.0	190	745	19
10	Maracineni	Doamnei	20	38.5	380	n/a	n/a
11	Prundu	Arges	21	4.8	158	n/a	n/a
12	Golesti	Arges	32	78.5	680	236	4

Coordinates: 442479 east, 377620north

Local Workspace ArgesTotal2 opened

RES Reservoir Editor	
Reservoir Edit Operations Zor	ne Rule
Reservoir Maracineni Res. [1 Physical Operations Obser Operation Set Maracineni Op	Description Attention Water level >=283m
 Flood Control 282.5 B 1410 S 1600 RHS 150 DS Control 1980 Decreasing ROC Flood Max 282.5 Flood Control 281 B 1347 S 1137 RHS 0 DS Control 1980 DS Control 1980 DS Control 1980 S 1137 RHS 0 DS Control 1980 Decreasing ROC Flood Max 281 Conservation 275 B 1040 S 0 RHS 0 Decreasing ROC Conservation 275 B 1040 S 0 Decreasing ROC Conservation 270.4 B 784 RHS 0 	Storage Zone Flood Control 282.5 Description
A Inactive	Define Zone with Time-Series
	OK Apply Cancel

//CATEASCA [42506]/FLOW/01AUG1999/1HOUR/ARGES1000Y0/

_ 7 🛛

National Rollout – e-LAC application for INHGA and Flood CBA methods

- Identifying infrastructure and operations for basins
- Developing ResSim models for basins
- Interconnecting with ANAR database, AvisoWatch/warning system and dispatch application
- Testing, training, practicing application and response

VULMIN – simplified identification of hazard maps

• DTM data and analysis of the geomorfological aspects

Flood-prone area: geomorphological approach

GEOMOPHIC POTENTIAL FOR FLOODS ON THE MAIN RIVER NETWORK IN ROMANIA

Flood-prone area: geomorphological approach Spatial patterns of flooding

- Mountain and hilly regions:
 - Floods in subsident depressions
 - Flash-floods
 - Floods caused by: dam failures, landslides, debris, ice, undersized bridges
 - Floods in areas with narrow and large river reaches

• Plain regions:

- Floods in the low and subsidence plains
- In the confluence sectors
- In the regulated floodplains and sand dunes areas
- In the Danube Delta
- Hydrophreatical floods related to the loess piping depressions generated through piping
- Floods caused by pond failures (Domino effect)

Dykes failure in the subsidence plain (Banat, 2005)

VULMIN – simplified identification of hazard maps

VULMIN Project – Vulnerability of settlements and environment to floods in Romania within the context of global change

Vulnerability assessments are indicator-based approaches

<u>The coordinates of indicator</u> <u>selection are based on exposure</u> <u>and sensitivity charaterstics of a</u> <u>region / area</u>

Geographical scales and contexts

Flood-prone areas

Landscape transformations and management

Demographic trends

Economic development, social characteristics and human well-being

Governance structures and institutional capacity

<u>Indicators</u>

- Number of people, households potentially affected by floods

- Land-use types and tenure; areas covered by crops, agricultural productivity by crops

- Income, education level, health, living standard, employment, etc.

- Population density, migration, percentage of rural population

- Education level, unemployment, net increase in number of jobs

- Number of people who live within walking distance of a center of local services

- Incentives for farmers, number and value of infrastructure development projects etc.

- Industrial productivity, value added by economic sectors
- Percentage of occupied people by economic sectors
- What is actually being done for mitigation and adaptation
- Institutional coordination, ways to monitor progress, advancement, conditions for innovation

CLAVIER Approach - Methodological issues

- <u>Economic Vulnerability</u> = f (Exposure, Sensitivity, Adaptive Capacity) (IPCC, 2001, Stern, 2007, CLAVIER 2009)
- Broader, all sector encompassing mapping of adaptive capacity
- Expected outcomes: absorption capacity of a regional economy with respect to macroeconomic shocks from climate change

EUROPEAN UNION

Source: The IPCC 3rd Assessment Report, cited by Stern, 2007

Exposure and sensitivity indicators relevant in determining the regional adaptive capacity to climate change

Individual case studies on regional sector-specific vulnerability were meant to complete the overall picture of regional vulnerability of a particular region.

Variables and Indexes

- Regionalized population projections 2025
- Education level in relation to CLAVIER average
- Growth rate of regional GDP per habitant/pps 2001-2005
- Ratio of regional GDP per habitant/pps in terms of national averages
- Sectoral Employment Shares
- Regional Employment Shares
- Sectoral Value Added Shares
- Sectoral Productivity Indicators
- Accessibility indicators
- Hirschman-Herfindahl (HHI)

0

245

VULMIN Project – Vulnerability of settlements and environment to floods in Romania within the context of global change

VULMIN Project – Vulnerability of settlements and environment to floods in Romania within the context of global change

Research directions

- Flood hazards in Romania identification of flood-prone areas at national and local scales
- 2. System of indicators for the assessment of vulnerability to floods
- 3. Vulnerability of flood-exposed units in Romania
- 4. Scientific services for national and local end-users

- Identification of flood-prone areas at national and local level and regionalization of extreme events
- To determine and collect indicators of vulnerability at national and local scales
- To analyze the vulnerability of settlements, infrastructure and environment to floods and flash-floods in the Bend Carpathians and Subcarpathians and the Moldavian Plateau
- To assess the communities' vulnerability to floods and water contamination in low land areas
- To assess the vulnerability to floods at national level & to regionalize of the endogenous potential of adaptive capacity
- To inform on the future trends in the hydrological regime change, as a basis for adaptation plans of water users
- To evaluate the end-users requirements in terms of scientific services related to floods
- To identify the most relevant end-users in

Scientific input for decision-making process, Vogel et.al, 2007 adapted from Clark, 2002 and Mitchell et al., 2006

CONCLUSION

UNDERSTANDING STAKEHOLDERS NEEDS

- Stakeholder involvement strategy and coordination: development of a common approach (method) for transnational, national and regional stakeholder identification and participation (related to floodrisk) in the Danube River basin build on the results of the ICPDR analysis;
- collection of feedback of the involved organisations and persons;
- in this action the overall participation process was set up.