

GEOCLOUDS FOR ENVIRONMENTAL MANAGEMENT

Evangelidis Konstantinos¹, Ntouros Konstantinos², Papatheodorou Konstantinos³, Konstantinidis Alexandros¹

Technological Educational Institute of Kentriki Makedonia, Dept. of Civil, Surveying and Geoinformatics Engineering, Terma Magnisias Str., 62124 Serres, Hellas. Email: kevan@teiser.gr

1. Lecturer, 2. Research Associate, 3. Associate Professor

Aim

- To identify the degree to which Cloud Computing capabilities suite to particularities, technical specifications and functional requirements of environmental - related projects.
- To standarize the involved spatial nature of environmental parameters according to the Geospatial Web

Cloud Computing...what is it

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be released and rapidly provisioned with minimal management effort or service provider interaction.

CC Essential Characteristics

Ondemand self-service

Broad network access

Resource pooling

elasticity

Measured service

Image from: www.theworldstechnology.com

Cloud-Computing Benefits

Image from: www.geospatialworld.net

Geospatial Cloud Computing -GCC

Has emerged due to the growing demand for cloudbased geospatial applications and platforms and refers to:

- Web-based map browsers
- GPS enabled applications
- in-car navigation services
- high resolution Earth imaging systems
- mobile smart phone location applications

GCC for Environmental Management?

GCC capabilities may **assist** in the following aspects of **Environmental Management**:

- Environmental Modeling: complex geoprocesses on geospatial data from multiple sources requiring high performance computing platforms
- Environmental Data Fusion: location-referenced sensor data need to be combined (fused) with large data sets of traditional GIS data

GCC for Environmental Management?

- Data Mining: information creation through sophisticated data mining based on geospatial criteria
- Demand Management: satisfy geoprocessing needs of a large number of users
- **Data sharing:** environmental maps sharing over the web.
- Environmental data delivery: environmental data delivery among different environmental projects

GCC for Environmental Management?

- Interoperability: establishment of a common framework for environmental geospatial data and services
- Security: handle security issues relating to geospatial data exchange
- Data Acquisition: Collection of data sourcing from different automated spatially dispersed

environmental sensors

Geoclouds for Environmental Management

 The term <u>Geocloud</u> denotes the <u>Geospatial</u> aspect of Cloud Computing.

 In the present, the term "GEOCLOUDS" refers to <u>Standards</u>, <u>Services</u> and <u>Tools</u>, employed to support Environmental Management applications by using the "Cloud"

Open Geospatial Consortium Standards

- Portrayal Service: Web Map Service (WMS)
- Data Services: Web Coverage Service (WCS)
 Web Feature Service (WFS)
- Processing Services: Web Processing Service
 (WPS)
- Catalogue Services: CS Core

Open Geospatial Consortium Standards

GeoMetadata Management Tools

- Data from different sources either governed by or collected with or corrected and maintained under different methods, methodologies or assumptions... ...require advanced Metadata documentation!
- Adopting a geospatial data tool for metadata management (e.g. INSPIRE GEOPORTAL Metadata editor) is a key action towards a successfull environmental project implementation

Interoperable Spatial Data Exchange formats

 For Systems deployed under different platforms and/or software components with different underlying data models,

interoperability may be achieved through:

- XML based encodings for spatial data (GML, KML)
- Other Web Semantic Standards for data interchange on the Web such as RDF

Indicative System Architecture

In the **client layer,** appropriate Web Services satisfy end user interaction with the project

The **Applications Layer** contains the software and the appropriate services to provide users with the demanded functionality

Data Layer supplies the application layer with data in order to perform calculations and processes

Conclusions-Further Developments

- Environmental Projects require real-time and archived data processing, homogenization, remote access and management functionalities provided by cloud computing.
- The spatial nature of environmental parameters combined with the penetration of smartphones and the development of location-based services, place Geospatial Cloud Computing as the hot topic for stateof-the-art support of environmental management.

Conclusions-Future Developments

...may include, without being limited to:

- <u>specialised telematic apps;</u> for controlling hardware equipment based on alerts/triggers sourcing from environmental sensors
- <u>repositories in the Cloud;</u> connected with sensors dispersed around the globe providing real time environmental data and information
- real time and archived data from <u>fusion / combination / data</u>
 <u>mining</u>
- environmental-related <u>processes</u> offered through the cloud from specialized geoprocessing providers

References

- The role of OGC Web Service (OWS) standards in EO market growth retrieved from http://www.space.corila.it/Program/Slide/25 Ramage.pdf
- Mell, P., & Grance, T. (2011). The NIST definition of cloud computing (draft). NIST special publication, 800(145), 7.
- L. McKee, C. Reed, S. Ramage OGC Standards and Cloud Computing Open Geospatial Consortium Inc., Wayland, MA, USA (2011), p. 14
- Evangelidis, K., Ntouros, K., Makridis, S., & Papatheodorou, C. (2013). Geospatial services in the Cloud. Computers & Geosciences.

GEOCLOUDS FOR ENVIRONMENTAL MANAGEMENT

Acknowledgments:

The research was partially funded by the EU within the context of the

Black Sea Basin Joint Operational Programme 2007-2013

