

Landslide Hazard Assessment on Regional Scales: **Pilot Implementation in Greece Acknowledgments:** SciNet NatHaz The SciNetNatHaz Project is partially funded by the EU and National funds within the context of the Black Sea Basin Joint Operational Programme 2007-2013

K. Papatheodorou, TEI of Kentriki Makedonia, Hellas Nikolaos Klimis, Democritus University of Thrace

SciNetNatHaz project Open Seminars, September-October 2015

Landslide Hazard Assessment in the Blaxi area. The....Gaps!

- Usable Data are lacking. Inventories of past landslides do not exist or are not accessible.
- Metadata are not supplied so it's very difficult to assess reliability and accuracy of available data (if found!).
- Different LHA methodologies are used even in the same country, making comparison of outputs, impossible.
- Hazard identification & Risk assessment on regional and on local scales (that could provide the essential information for planning typical preventive measures) has only been sparsely implemented.

SciNetNatHaz Landslide Hazard Assessment (LHA) related actions

The SciNetNatHaz project actions taken include:

- Select **worldwide accepted methodologies**, **applicable** in the wider area of the Black Sea basin, given the restrictions regarding data availability
- Adapt to "local" conditions and implement LHA on regional scales and in pilot implementation areas
- Compare selected methodologies in terms of feasibility to implement and accuracy & reliability of outputs
- Provide free access to data produced and processed with Metadata according to the INSPIRE directive provisions
- Indicatively assess the Risk on regional scale and implement analysis on a local scale which could provide the essential information for planning typical preventive measures.

Regional and Local scale LH Assessment to promote Prevention

Landslide Hazard Assessment on Regional Scale to promote strategic planning & development

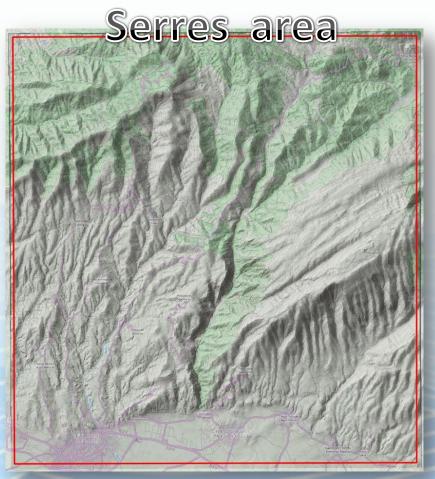
Hazard Identification Regional Scale Stability analysis on a local scale to assess typical preventive measures

Selected, Adapted to local conditions and Applied Methodologies

- A. Mora & Vahrson methodology (Sergio Mora C., & Wilhelm-Gunther Vahrson (1994): Macrozonation Methodology for Landslide Hazard determination. Bulletin of the Association of Engineering Geologists, Vol. XXXI No.1, 1994, pp.49-58.
- B. Federal Emergency Management Agency (FEMA, USA) methodology – HazUS (<u>https://www.fema.gov/hazus</u>)
- **C.** Factor of Safety calculation (Infinite Slope Model)

Implementation areas - Hellas

Both areas of pilot implementation fall inside the Black Sea Programme eligible area:


B. Komotini-Nymfaia

Implementation areas - Hellas

Komotini-Nymfaia_area

OTE KOHOTIN

A. Mora & Vahrson Methodology

Areas of pilot implementation

A. Serres

B. Komotini-Nymfaia

Scale of Regional Implementation

1:50.000 (input data & analysis)

A. Mora & Vahrson Methodology

Calculates the "Intrinsic Landslide Susceptibility" (SUSC) Taking into account the:

Slope Factor (**Sr**) Lithology Factor (**SI**) Soil Humidity Conditions (**Sh**)

And the Triggering Factor (TRIG) Deriver from the combination of Seismic factor (Ts) Precipitation factor (Tp) HI = SUSC * TRIG= = (Sr * SI * Sh) * (Ts + Tp)

A. Mora & Vahrson Methodology

The landslide Hazard indicator (HI)

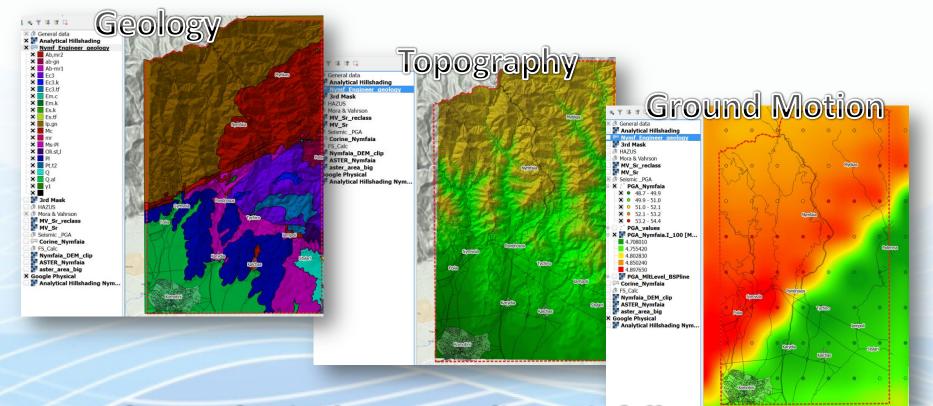
HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

Where: Sr : "Slope" factor Sl : Geology factor Sh: Humidity factor

Ts: (Earthquake) Seismic triggering factor Tp: Precipitation triggering factor

A. M&V Methodology-Data requirements

- Scale of Implementation 1:50.000
- Topographic data (topographic Maps, elevation data, lattice points etc). In case topographic data at a 1:50000 scale are not available, ASTER DEMs can be used at the expense of accuracy.
- Geologic Maps
- Ground Motion data (PGA values)


Mean Monthly Rainfall (mm) and MAX daily precipitations

A. M&V Methodology-Data requirements

...and some basic data regarding rainfall

Susceptibility Indicator SUSC

HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

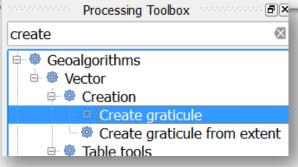
Includes the intrinsic properties of the landscape, the mechanical quality and its "passive" behavior. The parameters are the following:

- Slope Factor (Sr=Relative Relief),
- Lithology Factor (SI),
- Soil Humidity Conditions (Sh)

Susceptibility Indicator SUSC – Slope Factor HI = SUSC * TRIG = (Sr * Sl * Sh) * (Ts + Tp)

The <u>Slope Factor</u> is defined by the maximum difference in elevation per unit area **Rr = Relative Relief per grid unit (square km) Rr =** (Hmax-Hmin)/km2 Relative Relief Classification Slope Factor Sr

Relative Relief Rr (m/km2)		Classification	Slope Factor Sr
	0-75	Very Low	0
	76-175	Low	1
	176-300	Moderate	2
	301-500	Medium	3
	501-800	High	4
	>800	Very High	5
	Table 1. Slope fac	tor classification	

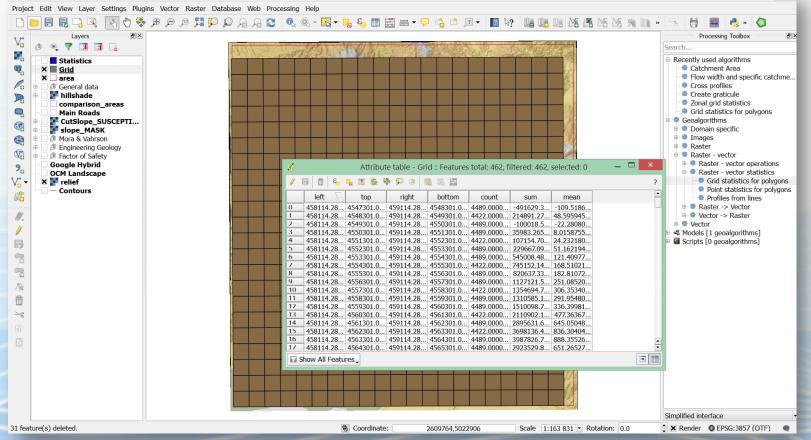


Relative Slope Factor(Sr) Calculation

- **QGIS / Toolbox / Vector / Creation / Create graticule**
- SET as GRID EXTENT the DEM file in order to avoid

Producing no Later granders		^
Parameters Log Help		
Grid type		
Rectangle (polygon)		-
Grid extent (xmin, xmax, ymin, ymax)		
457930.487219,479980.487219,4547037.1779,4570332.1779		
Horizontal spacing		
1000.000000	•	
Vertical spacing		
1000.000000	•	
Grid CRS		
EPSG:2100]	
Grid		
[Save to temporary file]		
🗴 Open output file after running algorithm		•
		<u> </u>
0%		
Run	Clos	e

- Grid Type: polygon
- Grid Extend: Select a layer which covers the implementation area (the DEM will be fine)
- Horizontal and Vertical spacing: 1000m
 - Grid CRS: Insert the **Geodetic Reference System** of your choice
 - Grid: grid name

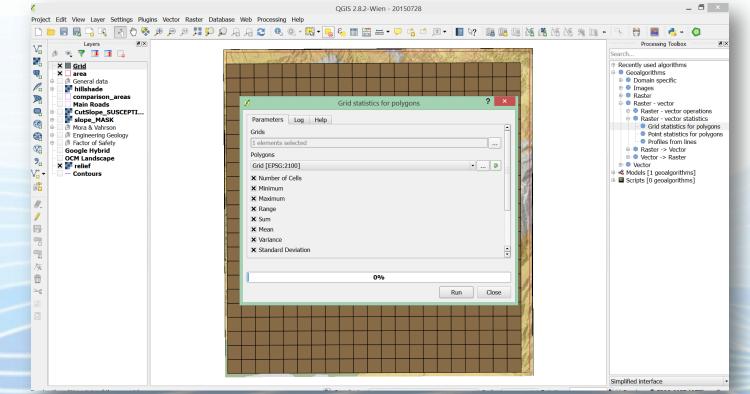


_ 🗇 🛛 🗡

Common borders. Common solutions.

Relative Slope Factor(Sr) Calculation step 1/3

A Grid made of polygons, will be created (shapefile)

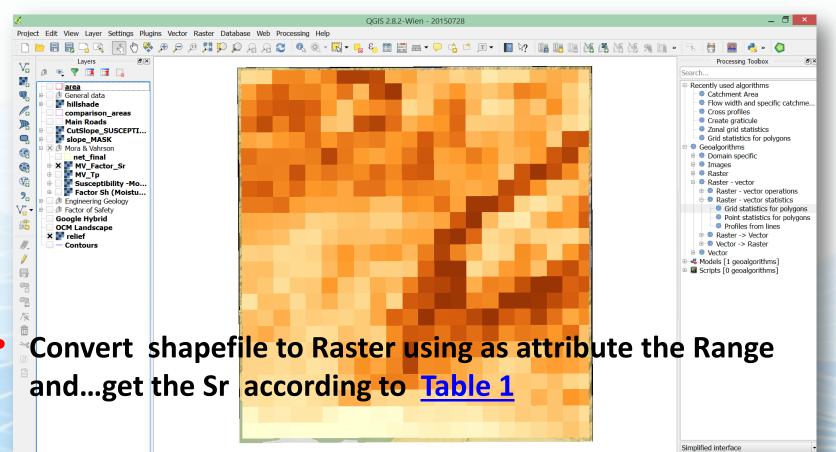


Relative Slope Factor(Sr) Calculation step 2/3

- Toolbox/ Raster-Vector / Grid Statistics from polygons
- Insert the requested statistical parameters (especially "RANGE") and...Run

Relative Slope Factor(Sr) Calculation step 2/3

A NEW shapefile will be created having as additional attributes the requested parameters including the "Range" which corresponds to the elevation difference in each 1km x 1 km cell.


		Voctor Dact	tor Databacc	a Woh	Drococcing	Holp		QGIS 2.8.2	-Wien - 20150728						_ □
		🕑 🗩 🗩 🖇					- <mark>.</mark>	8 📰 🗟	🗒 🛲 - 🗭 🐴 C	1 🔳 🕈 🚺 🔯	? 🗽 🖪 🕮 🐹		-	🬏 »	0
Layers										· · · · · ·			Processing	Toolbox	•
1 🔍 💎 🖪 🖪			(2.10) W	A PARTY OF THE OWNER	101			1 4 1 Sec.	100 100 100 100 1	ICAL TANK				TOODOX	
19 🔍 Y 💶 🖸				52150	1111	11/1	0.0	1 Har		BAR STREET			Search		
X Statistics				100.0010.00022	1 10 113 1	1100					1		Recently used algo		;
🗙 📕 Grid											3.5		🛛 🔮 Catchment A		
🗙 🗌 area													Elow width a		cific catch
🖶 📃 創 General data	<i>.</i>					Attribute	e table	e - Statistics	s :: Features total: 4	62, filtered: 462, s	selected: 21		_ □	×	
🖲 🔄 🚰 hillshade 📗	۽ 🛱 🗐 🗐 🗸	- <u>-</u> 🗈 🔒		100 00 L										2	
🗆 🗌 comparisoi		- 2 - 🔯	♥ ≯ B	10 I G	<u></u>						·			1	
Main Road:		top	right	ottor	count	sum	mean	5DEMCLIP	15DEMCLIP [_1	15DEMCLIP	15DEMCLIP [_3 /	5DEMCLIP [_4	15DEMCLIP [_5	15	/gons
CutSlope_	127 465114.28.							4356	39.4742088320	55.04513168		180411.3128400000	41.4167384850		
🗌 F slope_MA	106 464114.28.							4422	39.9480056760	60.1179962160		209017.6347500000	47.2676695510		
🗉 📄 🕼 Mora & Vahr:	169 467114.28.				1422.0000	2921		4422	58.0254287720	80.7438278200		292131.9031300000	66.0632978570		
🗉 🗇 Engineering	148 466114.28.				1422.0000	2509		4422	43.7374114990	70.2688369750		250975.1390800000	56.7560242140		
Image: Pactor of Saf	0 458114.28	4548301.0			1422.0000			4422	39.6376037600	80.9173583980		214891.2713600000	48.5959455810		
Google Hybri	85 463114.28	4548301.0	464114.28	45 4	1422 0000	2666	60	4422	48.2947502140	94.2684021000		266689.3793400000	60.3096742060		erations
OCM Landsca	2// 472114.28.	4547301.0	. 473114.28	. 45 4	1489.0000	9114	20	4489	179.6574554400			911456.2402800000	203.0421564400		tistics
A - Lellet	255 471114.28.	4547301.0	. 472114.28	. 45 4	1422.0000	8233	18	4422	157.4590759300	209.7102050800		823392.1292400000	186.2035570400		or polyg
Contours	211 469114.28.							4489	79.9625930790	137.7943725600		474207.3711900000	105.6376411600		or poly
	299 473114.28.							4489	201.2654876700			1023441.8372000000	227.9888254000		es
	233 470114.28.				1489.0000			4489	115.2020492600	181.4695739700		629059.8852800000	140.1336345000		
	212 469114.28.	4548301.0	. 470114.28	. 45 4	1422.0000	5983	13	4422	99.1789855960	182.2914123500	83.1124267580	598368.0142400000	135.3161497600	32	
	77 460114.28.	4548301.0	. 461114.28	. 45 4	1422.0000	3682	83	4422	47.7741851810	131.4268646200	83.6526794430	368235.3662500000	83.2734885220	47	
	2/8 472114.28.							4422	209.9279632600	295.7726745600	85.8447113040	1063054.3877000001	240.4012636200	26	5]
	356 475114.28.	4560301.0	. 476114.28	. 45 4	1356.0000	7057	16	4356	1583.3729248000	1670.1601563000	86.7872314450	7057638.8501000004	1620.2109390000		5]
	190 468114.28.							4356	64.1121444700		89.4433517460	398216.3169400000	91.4178872680		
	256 471114.28.							4356	176.6891021700			963160.3147099999	221.1111833600		
		4548301.0						4422	139.2024231000			851461.8361200000	192.5512971800		
		4549301.0						4489	65.6204528810			510496.6253800000	113.7216808600		
		4548301.0						4356	40.0750694270			264996.5867700000	60.8348454470		
	321 474114.28.				1489.0000			4489	209.4782562300			1064025.5341000000	237.0295241800		
	235 470114.28.							4489	179.9610443100			1009481.7610000001	224.8789844200		
		4549301.0						4489	79.7697296140			580159.7535100000	129.2403104300		
		4548301.0						4356	36.0344276430			255950.4587800000	58.7581402160		
		4548301.0						4422	35.8431205750			296526.9647600000	67.0572059600		
	319 473114.28. 379 476114.28.						95	4422 4489	916.1998291000			4237550.7274000002	958.2882694200		
	334 474114.28.							4489	1523.0817871000	1637.5545654000 1640.7602539000		7129378.5562000005 7013467.1407000003	1588.1885846000		
		4551301.0						4422	132.7786407500			901311.5011300000	1586.0396067000 206.9126494800		
	343 475114.28.							4422	210.1872711200			1096358.3691000000	247.9326931400		
	4/3114.20.	4347301.0	. 470114.20	. 4J 4	++22.0000	1090 /	247	4422	210.16/2/11200	330.3393730000	120.1721036600	1090229:209100000	247.9520951400	< P	
													0		1
	Show All Feat	tures 🖕												=	
					· · · · · · · · · · · · · · · · · · ·		-				and the second second				

Relative Slope Factor(Sr) Calculation step 3/3

Common borders. Common solutions.

Relative Slope Factor(Sr) Calculation

Layers	Kato Work
--------	-----------

Susceptibility Indicator SUSC – Lithology Factor 1/2 HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

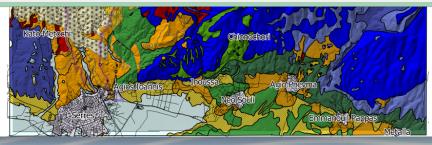
Includes the intrinsic properties of the landscape, the mechanical quality and its "passive" behavior. The parameters are the following:

The Lithology Factor (SI), is assessed from the description of the geologic formations and ideally, geotechnical parameters should be taken into account. There should be an, as close as possible to real conditions, estimation of the geotechnical behavior of the geologic formations.

Susceptibility Indicator SUSC – Lithology Factor 2/2 HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

Parameters to be considered: volumetric weight, shear strength, weathering, discontinuities and their spatial distribution and orientation, their relation to slope geometry, drainage and pore pressure conditions, water table etc

Lithology can be used to **evaluate susceptibility** as very low (0), low (1), moderate (2), medium (3), high (4) and very high (5) (the highest the number the highest the susceptibility)



Susceptibility Indicator SUSC – Geology Factor 2/2

Lithology factor according to Parameters considered (volumetric weight, shear strength, weathering etc)

Ø				Attrib	ute table - ar	ea_GEOLO	GY :: Feat	tures to	tal: 297, fil	tered: 297, se	elected: 0			
/ 号 💼 🍇 🖳 🛎 🌺 🌮 🗃 🖺 🎟 🗮														
)RM_COE	PERIMETER	AREA	E_N/	YDRO_COD	С	φ	Y	g_kN_m3	Hyd_Conduc	C.N_m2	g.N_m3	RAD	M&V_lithol
11	al	5339.410	349796.5	Ах	311	5	28	1.800	17.658	2.70000	5000.0000	17658.000	1887	5
12	ol	548.239	17449.036	Ах	321	32	19	2.300	22.563	1.50000	32000.0000	22563.000	0.3310	
13	ol	825.987	28115.140	Ах	321	32	19	2.300	22.563	1.50000	32000.0000	22563.000	0.3316	3
14	ol	2333.586	146100.5	Ах	321	32	19	2.300	22.563	1.50000	32000.0000	22563.000	0.3316	3
15	mr	2134.190	285691.6	Αχ	323	94	31	2.700	26.487	4.00000	94000.0000	26487.000	0.5411	0
16	mr	644.204	23543.455	Аχ	323	94	31	2.700	26.487	4.00000	94000.0000	26487.000	0.5411	0
17	mr	656.528	15992.729	Ах	323	94	31	2.700	26.487	4.00000	94000.0000	26487.000	0.5411	0
18	Pt.t2	7594.766	727917.380	Ах	121	5	28	1.900	18.639	2.70000	5000.0000	18639.000	0.4887	4
19	mr	455.823	11108.927	Αχ	323	94	31	2.700	26.487	4.00000	94000.0000	26487.000	0.5411	0
20	mr	620.850	18691.071	Αχ	323	94	31	2.700	26.487	4.00000	94000.0000	26487.000	0.5411	0
21	mr	486.616	12868.357	Αχ	323	94	31	2.700	26.487	4.00000	94000.0000	26487.000	0.5411	0
22	el2	5093.986	812783.4	Ах	42	5	38	1.800	17.658	4.00000	5000.0000	17658.000	0.6632	5
23	gn,ab,sch	4872.099	1110377	- A	223	62	36	2.700	26.487	2.50000	62000.0000	26487.000	0.6283	2
24	μν1	350.593	8441.049	Ах	412	117	46	2.650	25.997	3.00000	117000.00	25997.000	0.8029	1
25	sch1.gn	57651.583	2696933	- K	413	30	21	2.700	26.487	1.50000	30000.0000	26487.000	0.3665	3

Susceptibility Indicator SUSC – Lithology Factor 2/2

Lithology factor according to Parameters considered (volumetric weight, shear strength, weathering etc)

	07	-
Layers en		- Carlos
	Kate	o-Vror
area	I HAM A SPATIAL SASA SALAN IN	
General data comparison_areas		12.
Main Roads		
CutSlope_SUSCEPTIBILITY		5
hillshade	TANK STATES & CARSEN AND	
slope_MASK	AN THE AREA CONTRACT OF A CONTRACT.	1
🗇 HazUS		14
Dia & Vahrson		12
net_final		4
Landslide Hazard Indicator		
Mora_Vahrson_LHA_Serres		
Susceptibility -Mora & Vahr Very Low		THE .
Low		1
Moderate		
	Xirotopos // / Oriti	12
High		
Very High	CANTER STATES DE TERRE A DATA	- 13 C
Factor Sh (Moisture)		
MV_Sr_Serres_final		er (* 1
MV_Tp	Chrysopigi	
MV_TS MV_Factor_Sr		
PGA_Serres.I_100 [Multile		
Engineering Geology		15
Factor of Safety		
relief	Electras	1
- Contours		
OCM Landscape		
Google Hybrid	Kato-Metocht	
		1
	CARLER ZON DE CALLER TO MULCO	
	Actos Definits Inousse Aglo Prevma	18
		11
	NEOSOUL OF ALTHER DIREOSOUL	137
	Emmanoul Pappas	110

Susceptibility Indicator SUSC – Soil Moisture

HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

Takes into account he average conditions of soil moisture. Quantifies the influence of **accumulated humidity throughout the year.**

Best measured in situ, but usually a simple methodology of soil-water balance can be used requiring only the average monthly precipitations.

Steps to follow:

- 1. Calculate the AVERAGE Monthly potential evapotranspiration (PET) for the implementation area
- Each monthly average precipitation is assigned an index value according to Table 3
- 3. The TOTAL of all 12 month assigned values are calculated for each analyzed rain gage station. These values range from 0 to 24.
- 4. The total is classified into 5 groups according to Table 4

Average Monthly Precipitation AMP (mm/month)	Assigned Value	* 125 is the proposed value for South America. We must use a value around the average
<125*	0	monthly potential
126-250	1	evapotranspirationwhich may have been correlated to
>250	2	elevation.

Table 3. Average monthly rainfall values classification **Accumulated value** Qualification **Factor Sh** of Precipitation Indices 0-4 Very Low 1 5-9 2 Low 10-14 Medium 3 15-19 High 4 20-24 Very High 5

 Table 4. Moisture factor (Sh) from accumulated AMP values

Triggering Indicator TRIG HI = SUSC * TRIG = (Sr * Sl * Sh) * (Ts + Tp)

Represents the EXTERNAL driving forces which trigger the event.

Combines two factors:

- i) the 100 year earthquake and
- ii) The 100 year intense rainfall events

Triggering Indicator TRIG	In ensitiet (MV) Tr=100yr	Ke Gualification	Factor Ts
HI = SUSC * TRIG = (Sr * SI * Sh) *	(Ts + Тр)	Slight	1
	IV	Very Low	2
Seismic intensity factor Ts is	V	Low	3
determined by analyzing	VI	Moderate	4
landslides triggered by	VII	Medium	5
earthquakes to assess the	VIII	Considerable	6
influence of seismic	IX	Important	7
intensities on the group of	Х	Strong	8
lithologic, climatic and	XI	Very Strong	9
morphologic conditions.	XII	Extremely Strong	10

Table 5. Seismic Intensity factor BASED ONOBSERVATIONS in Costa Rica and Central America

Triggering Indicator TRIG - Earthquakes

HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

The Seismic Intensity for 100yrs return period needs to be calculated

Triggering Indicator TRIG - Precipitation

HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

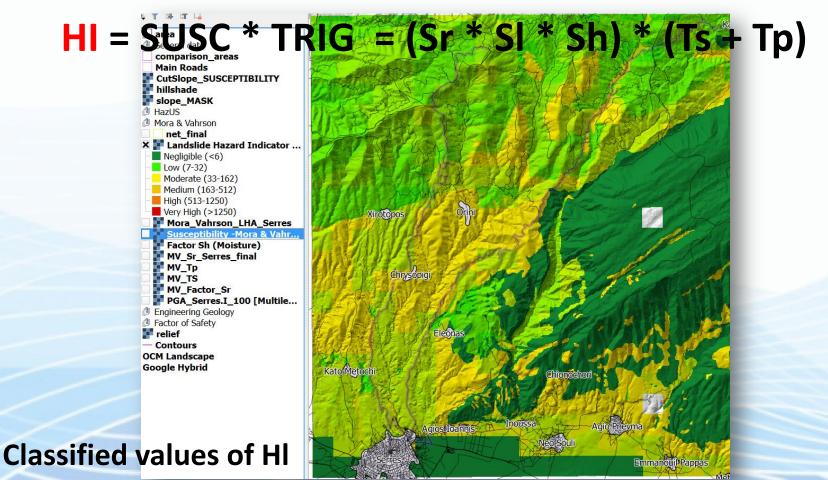
Maximum Rainfall n>10yrs, Tr = 100yrs	Rainfall n<10yrs; Average	Qualification	Тр Factor
<100mm	<50mm	Very Low	1
101-200mm	51-90mm	Low	2
201-300mm	91-130mm	Medium	3
301-400mm	131-175mm	High	4
>400mm	>175mm	Very High	5

Table 6. Precipitation factor (Tp) originating from the classification of maximum daily precipitations over a return period if 100yrs. An auxillary classification based on the average yearly maximum values per day is given in column 2.

Both Serres and Nymfaia areas present average maximum DAILY precipitations in the range of 51-90mm, so they fall into the **"Low"** category (Tp=2)

Classification of Landslide Hazard Indicator (HI)

HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)


HI values range from 0 to 1250 or more	Value of HI	Class	Classification of Hazard of Landslide Potential				
	<6	I	Negligible				
These values are	7-32	II	Low				
indicative of the	33-162	III	Moderate				
landslide hazard	163-512	IV	Medium				
according to Table	513-1250	V	High				
7	>1250	VI	Very High				
	Table 7 . Classification of the Landslide Hazard HI parametric values.						

Classification of Landslide Hazard Indicator (HI)

END of the 1st cycle

Areas of pilot implementation

A. Serres B. Komotini Viala (Constant)

B. FEMA methodology (Hazard US)

Areas of pilot implementation

A. Serres

B. Komotini-Nymfaia

Scale of Regional Implementation

1:50.000 (input data & analysis)

Landslide Hazard Assessment (FEMA)

- 1. Assess Landslide Susceptibility (under static conditions)
- 2. Assess the Critical Acceleration (Ac)
- **3.** Compare (Ac/PGA) the Critical Acceleration (Ac) with the actual Peak Ground Acceleration (PGA)

All the above parameters are calculated for two different moisture/groundwater conditions: "DRY" and "WET" whereas "DRY" corresponds to groundwater level BELOW surface of failure and "WET" corresponds to groundwater ON ground surface.

1. Landslide Susceptibility under static conditions

Step 1: Geology (need to classify the formations in one of the 3 categories in Table 1)

Step 2: Slope angle (need to classify the formations in one of the six categories in Table 1)

Step 3: Underground Water Table (need to distinguish between "DRY" (when ground water below of level of sliding) and "WET" (when ground water at ground surface).

Landslide Susceptibility under static conditions

Table 8. Landslide susceptibility under static conditions

(HazUS MH, Chapter 4 – PESH)

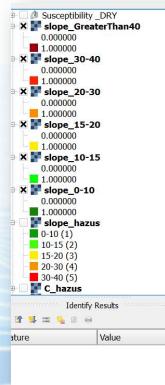
	Geologic Group		, SI	ope Ang	le, degre	es		
		0-10	10-15	15-20	20-30	30-40	>40	scale I: less susceptible
	(a) DRY (groundwate	r below l	evel of sli	ding)				coole Vi most sussentible
A	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, $c' = 300 \text{ psf}, \phi' = 35^{\circ}$)	None	None	Ι	п	IV	VI	scale X: most susceptible
в	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone, $c' = 0, \phi' = 35^{\circ}$)	None	ш	IV	v	VI	VII	None I I
с	Argillaceous Rocks (shales, clayey soil, existing landslides, poorly compacted fills, c' =0 ϕ' = 20°)	v	VI	VII	IX	IX	IX	
	(b) WET (groundwater	level at	ground su	rface)				10
A	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, $c' = 300 \text{ psf}$, $\phi' = 35^{\circ}$)	None	ш	VI	VII	VIII	VIII	
в	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone, $c' = 0, \phi'$ = 35°)	v	VIII	IX	IX	IX	х	
с	Argillaceous Rocks (shales, clayey soil, existing landslides, poorly compacted fills, c =0 ϕ = 20°)	VII	IX	x	X	x	x	

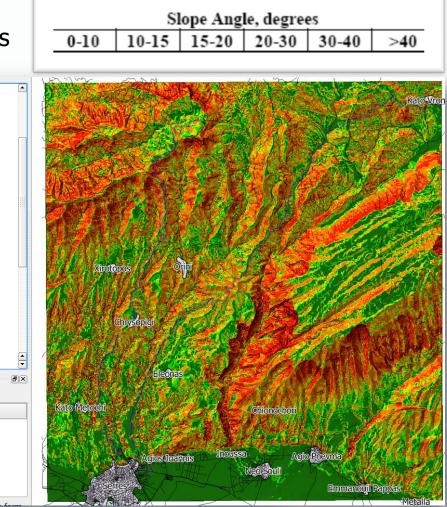
as shown on the map

e Current laver

How to...1/4 Geologic Group Common borders. Common solutions. (a) DRY (groundwate Strongly Cemented Rocks (crystalline rocks 1. Create a NEW column in "geology.shp" and classify the А and well-cemented sandstone, $c' = 300 \text{ psf}, \phi' = 35^{\circ}$ geologic formations according to **Table 8** in A, B & C Weakly Cemented Rocks and Soils (sandy в soils and poorly cemented sandstone, $c' = 0, \phi' = 35^{\circ}$ Categories Argillaceous Rocks (shales, clayey soil, slope_10-15 С existing landslides, poorly compacted fills, c slope_0-10 $=0 \phi' = 20^{\circ}$ 2. Create a NEW raster slope_hazus 🗙 📑 C_hazus C (c=0, f=20) (1) with all three B (c=0, f=35) (2) A (c>15kPa, f=35) (3) categories (as the C hazus A category 0.000000 1.000000 C_Hazus shown) C hazus B category 0.000000 1.000000 C hazus C category 3. Create for **EACH** 0.000000 1.000000 Mora & Vahrson Orini Xirotopos category, a Engineering Geology DipDir Dip ALL NEW **SEPARATE** file to be Dip CLIP **TOBIA** classes **TOBIA** index Chrysopici used as MASK DipDir_CLIP Eng_Geology area_GEOLOGY (C Hazus A category Factor of Safety Identify Results 8× etc) 🐛 🗈 🖨 Value Chianachar ture 4. The classes made will cover the entire area Agio Pney olos Ioannis

Auto open form





How to...2/4 Common borders. Common solutions.

- Reclassify "slope" into the slope categories shown in *Table 8*
- 2. Create a NEW raster with all six categories (as the slope_hazus shown)
- 3. Create for **EACH** category, a **SEPARATE file** to be used as **MASK** (slope_0-10 etc)
- 4. The classes made will cover the entire area as shown on the map

Tahle 8

🗶 F slope_GreaterThan40

0.000000 1.000000 Signature Signat

1.000000 Sippe_20-30 0.000000

1.000000 Second States 15-20

0.000000 1.000000 September 10-15

0.000000

🗙 F slope_0-10

0.000000

How to...3/4

Common borders. Common solutions.

- Calculate the respective susceptibility category for each Geologic Group Class and then for each moisture condition (DRY or WET)
- i.e. For calculating the Geologic Group "A" susceptibility under WET conditions, the formula used was:

"C_hazus_A_category@1" * (0 * "slope_0-10@1" + 3 * "slope_10-15@1" + 6 * "slope_15-20@1" + 7 * "slope_20-30@1" + 8 * "slope_30-

20@1" + 7 * "slope_20-30@1" + 8 * "slope_30-40@1" + 8 * "slope GreaterThan40@1")* See the layer names in the next image

Where:

- "C_Hazus_A_category" is the mask to erase values outside this specific category area (is "1" where valid and "0" outside the specific category area)
- Slope_*@1 are the "slope" classes and
- the multiplication factors correspond to the susceptibility values shown in the table

	Geologic Group		S	lope Ang	le, degre	es	
		0-10	10-15	15-20	20-30	30-40	>40
	(a) DRY (groundwate	r below le	evel of sli	ding)			
A	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, $c' = 300 \text{ psf}, \phi' = 35^{\circ}$)	None	None	I	Π	IV	VI
в	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone, $c' = 0, \phi' = 35^{\circ}$)	None	Ш	IV	v	VI	VII
с	Argillaceous Rocks (shales, clayey soil, existing landslides, poorly compacted fills, c' =0 $\phi' = 20^{\circ}$)	v	VI	VII	IX	IX	IX
	(b) WET (groundwater	level at g	ground su	urface)			
A	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, $c' = 3(0 \text{ psf}, \phi')$ = 35°)	None	Ш	VI	VII	VIII	VII
В	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone, $c' = 0$, $\phi' = 35^{\circ}$)	v	VШ	IX	IX	IX	x
с	Argillaceous Rocks (shales, clayey soil, existing landslides, poorly compacted fills, c' =0 $\phi' = 20^{\circ}$)	VII	IX	х	х	х	x

How to...4/4 Common borders. Common solutions.

Susceptibility under different moisture conditions			%	Raster bands WI values@1 Z_10m@1 Z_1m@1				Raster calculator Result layer Output layer Output format GeoTIFF			_susceptibility		
Geologic Group				igle, degree									
				20-30	30-40	>40	-	Curren	t layer extent				
(a) DRY (groundwater be A Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, c'=300 psf, φ'= 35°) N	one	None	ng) I	п	IV	VI		X min Y min Column	615986.550 4552183.40 s 409	088 🗘 Y m	ax 627073.7 ax 4570650. vs 682		
				slope_30 slope_Gre	_	' in_40@1		Output	CRS result to proje	Project CRS (E	EPSG:2100 - (GGRS8	•
				• Operate	ors								
				+		*	sqrt	COS	sin	tan	log10		(
				-		/	^	acos	asin	atan	In)
				<		>	=	!=	<=	>=	AND		OR
				Raster ca	alculato	r expres	sion						
										@1" * 0 + "slop an_40@1" * 6)		* 1 +	
				Expression	valid						ОК	Ca	ancel

Emmanou

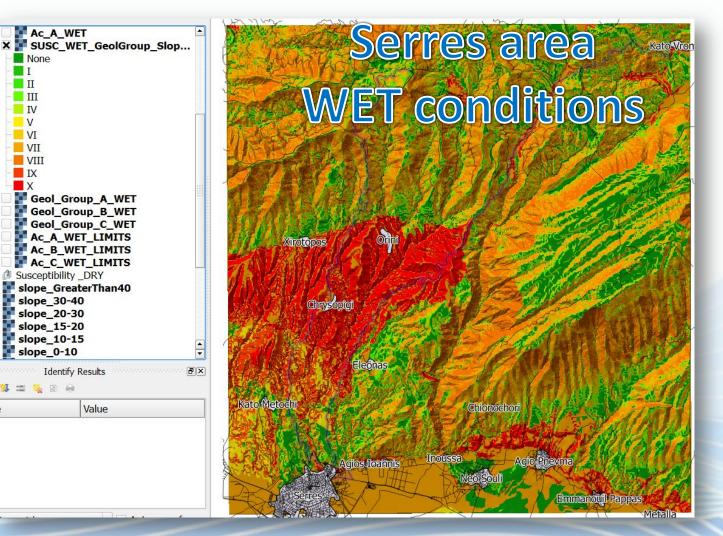
Common borders. Common solutions. Landslide Susceptibility under static conditions

Susceptibility under different moisture conditions

is calculated by adding the individual Susceptibilities Per Geologic Group

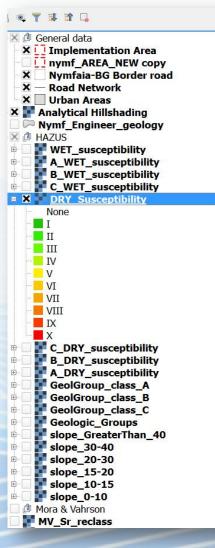
- X - SI	_C_DRY_LIMITS JSC_dry_GeolGroup_Slope	
Non		
- 🔳 I		
II 📕 🔤		
III		
IV V		
VI		
VII		
VIII	i .	
IX		
X		
	eol_Group_A_dry eol_Group_B_dry	223
	eol_Group_C_dry	
	e_GreaterThan40	
	e_30-40	
100 B 100	e_20-30	
	e_15-20	
slope	e_10-15 e_0-10	
	e_hazus	
C ha	zus_A_category	
C_ha	Zus_A_category	
C_ha	izus_A_category	-
C_ha C_ha C_ha	Identify Results	• IX
C_ha C_ha C_ha	Identify Results	• • ×
C_ha C_ha C_ha	Identify Results	• ×
C_ha C_ha C_ha	Identify Results	• •
C_ha C_ha C_ha	Identify Results	
C_ha C_ha C_ha	Identify Results	• ×
C_ha C_ha C_ha	Identify Results	
C_ha C_ha C_ha	Identify Results	×
C_ha C_ha C_ha	Identify Results	T X

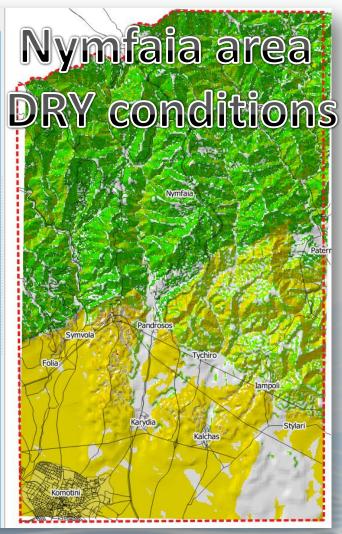
Serres area DRY conditions Chrysopigi



Susceptibility under different moisture conditions

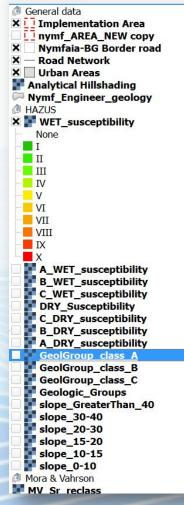
is calculated by adding the individu Susceptibilities Per Geologic Group





Susceptibility under different moisture conditions

is calculated by adding the individual Susceptibilities Per Geologic Group



Susceptibility under different moisture conditions

is calculated by adding the individual Susceptibilities Per Geologic Group

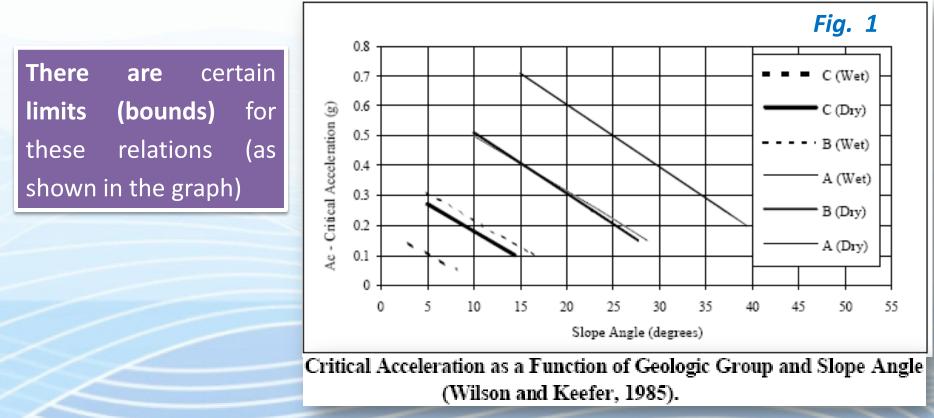
s 🝸 💀 📬 🗔

Nymfaia area **VET** conditions Nymfaia Pandrosos Symvola ychird Folia Iampoli Karydia Stylari Kalcha Komotini

2. Landslide Susceptibility under seismic conditions

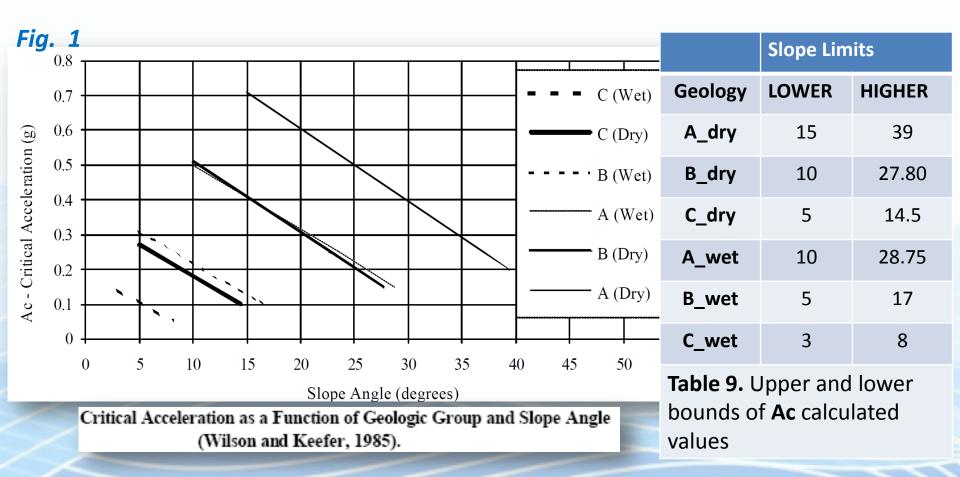
Limit Equilibrium Method principle: an earthquake is considered as a horizontal force (seismic coefficient * weight of the potentially sliding mass of a slope)

Critical Acceleration (A_c) is defined as the **horizontal** acceleration that produces a $F_s = 1.0$



Common borders. Common solutions. Calculating the Critical Acceleration A_c

Critical Acceleration (A_c) is a complex function of **slope**, **geology**, **steepness**, **groundwater table**, **type of landsliding** & **history of previous slope performance**.



Slope limits for a valid Ac

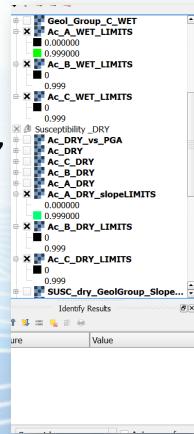
Limits of slope angles and Critical Accelerations

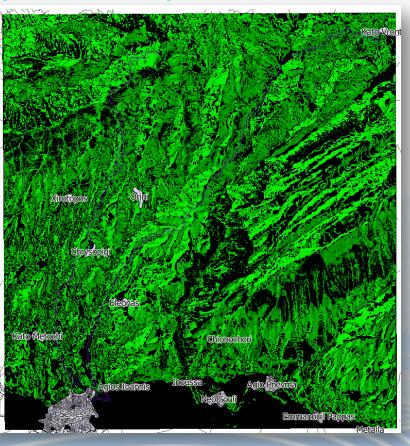
Table 10

	Slope Ang	le, degrees	Critical Acceleration (g)			
Group	Dry Conditions	Wet Conditions	Dry Conditions	Wet Conditions		
Α	15	10	0.20	0.15		
В	10	5	0.15	0.10		
С	5	3	0.10	0.05		

 Table 11
 Critical Accelerations (ac) for Susceptibility Categories

[Susceptibility Category	None	Ι	П	ш	IV	v	VI	VII	VIII	IX	х
	Critical Accelerations (g)	None	0.60	0.50	0.40	0.35	0.30	0.25	0.20	0.15	0.10	0.05

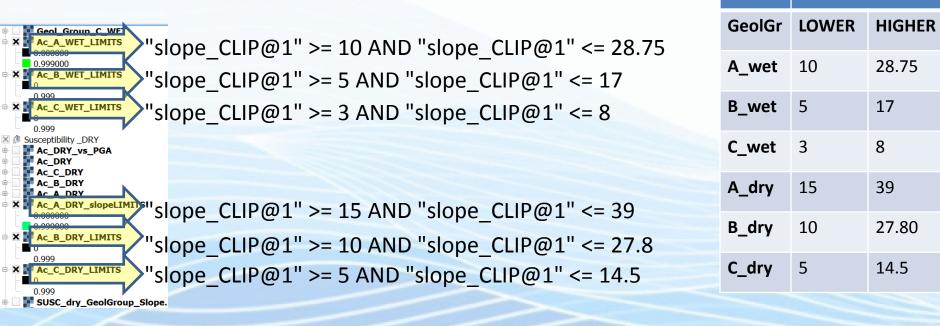



Definition of Slope lower bounds for calculating a valid value of Ac (how to...)

To calculate the <u>Ac</u> <u>calculation slope based</u> <u>limits</u> (Table 2: 10-28 degrees) for the **Geologic Group "A" - WET conditions,** in QGIS Raster Calculator insert:

"slope_CLIP@1" >= 10 AND "slope_CLIP@1" <= 28

Where: "slope_CLIP" is the slope map of the area in degrees

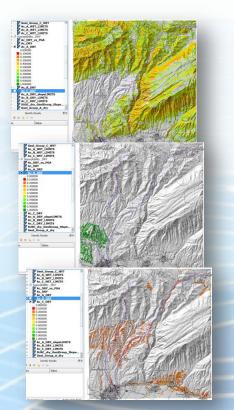


Definition of Slope lower bounds for calculating a valid value of Ac (equations)

ie. To calculate the <u>Ac calculation slope based limits</u> (Table 2) for each Geologic Group and WET conditions, in QGIS Raster Calculator insert: Slope Limits

Calculate the Ac for EACH geologic Group and moisture condition

0.8 need To that end, we the C (Wet) 0.7 equations for calculating Ac as a 0.6 50 C (Dry) Ac - Critical Acceleration 0.5 B (Wet) function of "Slope Angle", as 0.4 A (Wet) Wilson & Keefer shown in 0.3 B (Dry) 0.2 diagramm A (Dry) 0.1 . 0 0 5 10 15 20 25 30 35 45 50 55 Slope Angle (degrees) A dry A wet Bdry Cdry Bwet Cwet Slope -0.02094 -0.0186 -0.20469-0.01794 -0.01815 -0.01676 Interception 1.025017 0.68664 7.169656 0.397308 0.362313 0.187761 -0.99999-0.9999 -0.99998 -0.99974 -0.99997 -0.99903R



Ac calculation for EACH geologic Group and moisture condition

Equations in RasterCalc : "Slope Based Upper and Lower Bounds" * "Geologic Group Category" * [equation for calculating Ac as a function of SLOPE]

"Ac_A_DRY_slopeLIMITS@1" * "C_hazus_A_category@1" * (1.025017 - 0.02094 * "slope_CLIP@1")

"Ac_B_DRY_LIMITS@1" * "C_hazus_B_category@1" * (7.169656 - 0.20469 * "slope_CLIP@1")

"Ac_C_DRY_LIMITS@1" * "C_hazus_C_category@1" * (0.362313 - 0.01815 * "slope_CLIP@1")

Respective equations are used for calculating the Ac limits for WET conditions

PGA values

PGA values are calculated according to the seismic hazard assessment for the examined region (i.e. for 475 years or 1000years or 2000years) with the use of:

• either the relevant Ground Motion Prediction Equations (GMPE) suitable for the examined region and soil type

• or the relevant GMPEs suitable for the examined region and for rock conditions, which we will be multiplied with an amplification factor (PGA_i = $PGA_R * F_{Ai}$)

Local GMPEs (Skarlatoudis et al., 2003) for the case of Greece

Example

 $logPGA = 1.07 + 0.45M - 1.35 \times ln(R + 6) + 0.09F + 0.06S \pm 0.286$

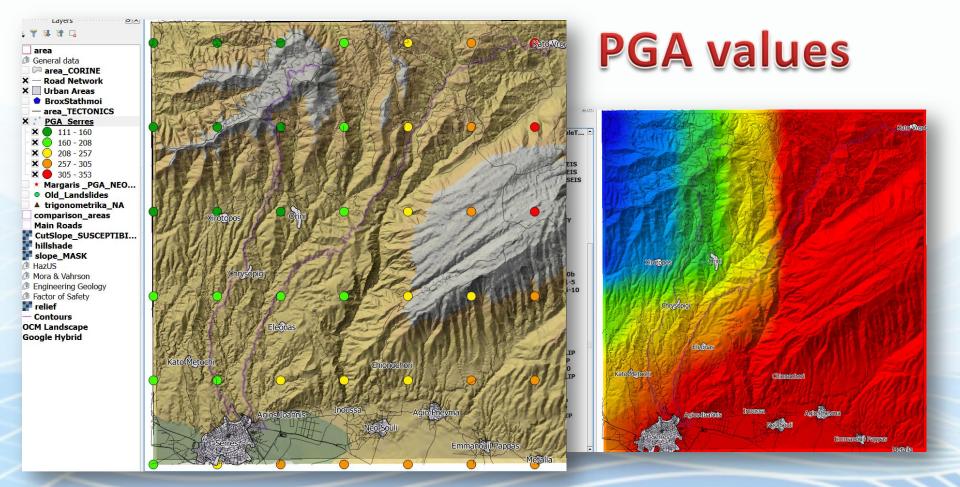
 $\log PGA = 0.86 + 0.45M - 1.27 \times \ln (R^2 + h^2)^{\frac{1}{2}} + 0.10F + 0.06S \pm 0.286$

Calculating PGA values

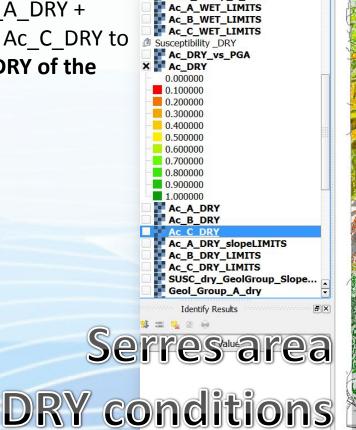
 $PGA_i = PGA * F_{Ai}$

- PGA_i is peak ground acceleration for site class i (in units of g)
- PGA is peak ground acceleration for site class B (in units of g)
- F_{Ai} is the short period amplification factor for site class i, as specified for spectral acceleration $S_{AS}(g)$

Site Class B			Site Class				
Spectral Acceleration	А	В	С	D	E		
Short-Period, S _{AS} (g)	Short-Period Amplification Factor, FA						
≤ 0.25	0.8	1.0	1.2	1.6	2.5		
0.50	0.8	1.0	1.2	1.4	1.7		
0.75	0.8	1.0	1.1	1.2	1.2		
1.0	0.8	1.0	1.0	1.1	0.9		
≥ 1.25	0.8	1.0	1.0	1.0	0.8*		


Soil amplification factors (Hazus 99-SR2 Technical Manual, Chapter 4-PESH)

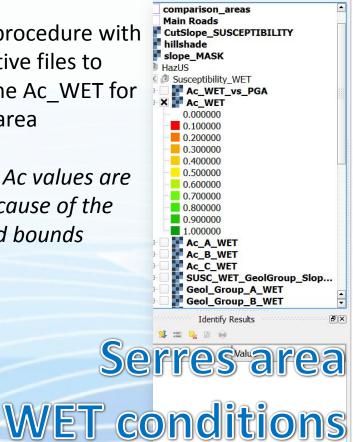
PGA values for Serres pilot implementation area

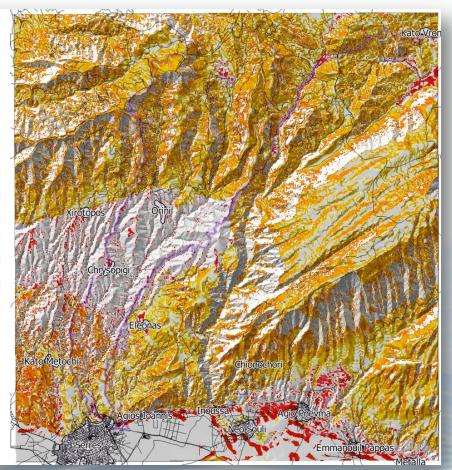


Ac calculation for EACH geologic Group and moisture condition

ADD the Ac_A_DRY + Ac_B_DRY + Ac_C_DRY to get the **Ac_DRY of the entire area**

Geol Group C WET





Ac calculation for EACH geologic Group and moisture condition

The same procedure with the respective files to calculate the Ac_WET for the entire area

Note: High Ac values are missing because of the slope based bounds applied

"Shallow" landslide Susceptibility under seismic conditions

Critical Acceleration (A_c) is defined as the horizontal

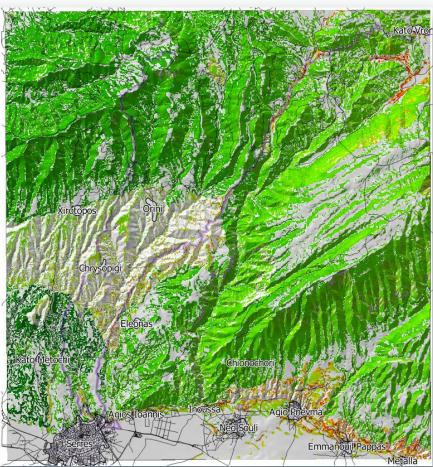
acceleration that produces a $F_s = 1.0$

Criterion:

Index A_c/PGA and a "subjective" categorization

Very high: < 0.3
High: 0.3 - 0.6
Moderate: 0.6 - 0.8
Low: 0.8 - 1.0
Very Low: 1.0 - 3.0
None: > 3.0

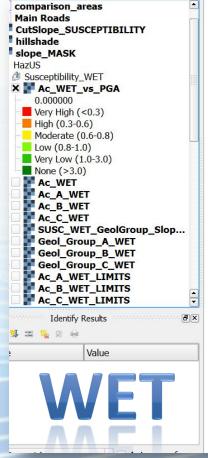
"Shallow" landslide susceptibility to earthquake-induced displacements, as specified by the index Ac/PGA

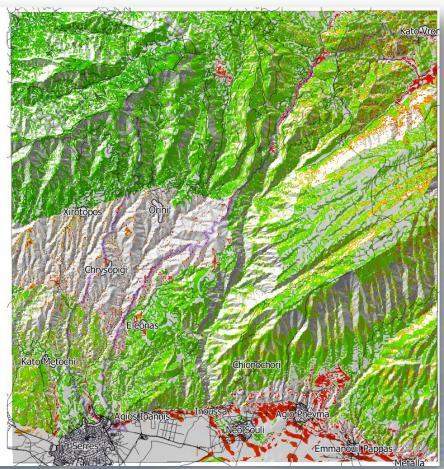


"Shallow" landslide susceptibility under seismic conditions

	The second se
Main Roads	
CutSlope_SUSCEPTIBILITY	
hillshade	
slope_MASK	1
HazUS	and the second s
Susceptibility_WET	111111111
Susceptibility _DRY	A CARLES SO
X Ac_DRY_vs_PGA	
0.000000	1. 18 18 19 1
Very High (<0.3)	Contraction of the
High (0.3-0.6)	
Moderate (0.6-0.8)	CONTR.
Low (0.8-1.0)	1 NO 100 191
Very Low (1.0-3.0)	Server and Mar
None (>3.0)	建筑机会资源 社
Ac_DRY	Xiro
Ac_A_DRY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ac_B_DRY	
Ac C DRY	A MARANA
Ac_A_DRY_slopeLIMITS	1117544
Ac_B_DRY_LIMITS	
Ac_C_DRY_LIMITS	1122 4 1
SUSC_dry_GeolGroup_Slope	A. F. Stance
Geol_Group_A_dry	
Geol_Group_B_dry	
Identify Results	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1 = <u>8</u> 0 0	
	A STATE A
Value	Kato Metochi
	ALL AND AND
	Carl Carl
	L. Y COMPANY
	LICEST AC
	AL ANY CON
Auto open form	

comparison_areas





"Shallow" landslide susceptibility under seismic conditions

"Shallow" landslide susceptibility under seismic conditions

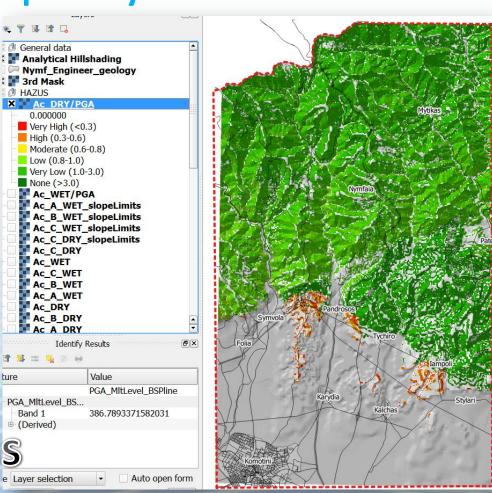
o 🍸 🗊 😭 🗔 🗇 General data

: F 3rd Mask HAZUS

0.000000

Ac WET

Ac_DRY


ture

Band 1

(Derived)

Nymfaia area DRY conditions



"Shallow" landslide susceptibility under seismic conditions

Value PGA_MItLevel_BSPline PGA_MItLevel_BSPline PGA_MItLevel_BSPline PGA_MItLevel_BSPline PGA_MItLevel_BSPline (Derived) WETCONDITIONS ode Layer selection Auto open form

3. Landslide Hazard under seismic conditions

- Based on FEMA method.
- Hazard is assessed over the calculation of Permanent Ground Displacements
- The methodology is applicable to Hazard assessment of "shallow" landslides

Data Requirements

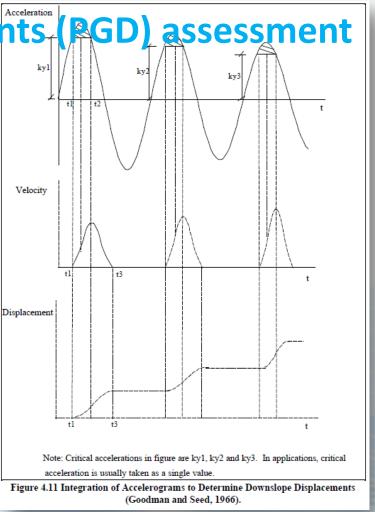
Data produced during the previous implementation stages

Permanent Ground Displacements (PGD) assessment

- The FEMA method is based on the assessment of PGD (Permanent Ground Displacements) for landslides;
- it is valid for "shallow" landslides, i.e with a depth of the failure surface not exceeding 7 to 10m max from the surface.

Requirements:

A_c: critical acceleration (g); has already been analyzed and calculated in previous stages



Permanent Ground Displacements (PGD) assessment

The FEMA method is based on the assessment of PGD (Permanent Ground Displacements) for landslides (Goodman and Seed, 1966)

Permanent Ground Displacements (PGD) assessment

$E[PGD] = E[d/A_{is}]*A_{is}*n$

A_{is}: induced acceleration (g) – A_{is} = PGA
 A_{is} = PGA : for shallow landslides
 A_{is} = 2/3*PGA: for massive, deep and large landslides

n: number of cycles (function of earthquake magnitude M_w)
 E[d/A_{is}]: expected displacement factor for each cycle

n: Number of Cycles (moment Magnitude)

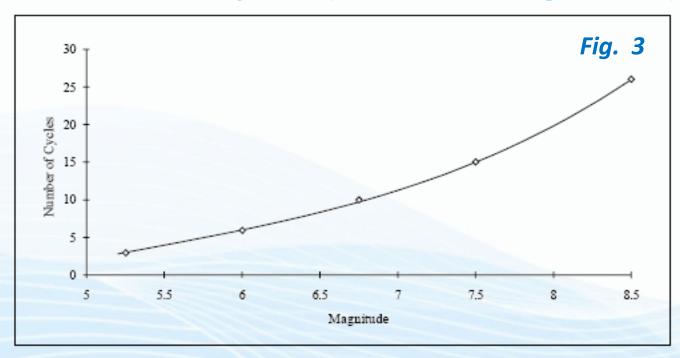
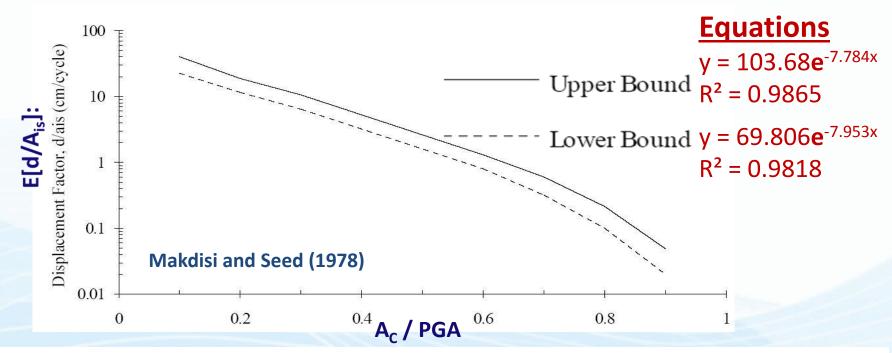
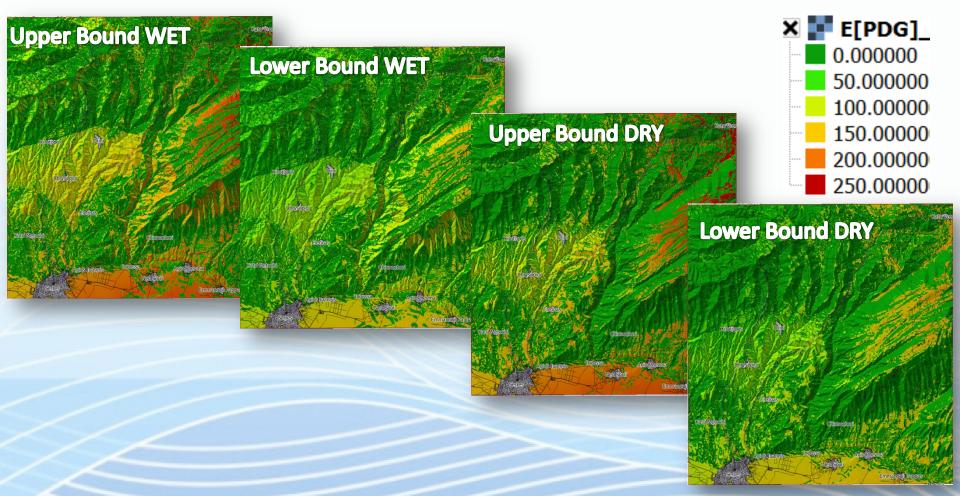


Figure 4.15 Relationship between Earthquake Moment Magnitude and Number of Cycles.


n = 0.3419M_w³ – 5.5214M_w² + 33.6154M_w – 70.7692 (Seed and Idriss, 1982)

Permanent Ground Displacements (PGD) assessment

Fig.2. Relationship between Displacement Factor and ratio Critical Acceleration (Ac) to Induced Acceleration (PGA)


Calculation of the expected displacement factor in cm/cycle. Two (2) equations are given for the lower and upper bound for the earthquake induced permanent displacements

Permanent Ground Displacements (PGD) assessment

B. FEMA methodology (Hazard US)

C

B. Komotini-Nymfaia

Scale of Region II be to the total of total of the total

1:50.000 (input data & a lysis)

C. Landslide Hazard Assessment - FS

Areas of pilot implementation

A. Serres

B. Komotini-Nymfaia

Scale of Regional Implementation

1:50.000 (input data & analysis)

- Physically based landslide hazard assessment methods are based on *modeling of slope failure processes*
- Applicable over large areas if geological & geomorphological conditions are fairly homogeneous and landslide types relatively simple
- Applicable to areas with incomplete or even non existing landslide inventories
- Most of them apply the infinite slope model, therefore they are applicable in the case of shallow landslides
- Also, a deterministic model for plane or circular landslides can be applied
- They account for different triggering parameters: rainfall and transcient groundwater response or to the effects of earthquake excitation

Landslide Hazard Assessment - FS

- Physically based landslide hazard assessment methods are based on modeling of slope failure processes
- the factor of safety F_s computation method (triggering factors: rainfall & earthquake)

Landslide Hazard– Static conditions / Precipitation

Infinite Slope Model (Factor of Safety)

$$F_{S} = \frac{c' + (\gamma_{app} - m * \gamma_{w}) * z * \cos^{2} \beta * \tan \varphi'}{\gamma_{app} * z * \sin \beta * \cos \beta}$$

Earth surface

$$- \overline{z}$$

 z_{w}
Failure surface
 $m = z_{w} / z$
 $z = Depth of failure surface (map ASHT)$
 $z_{w} = Height of watertable$

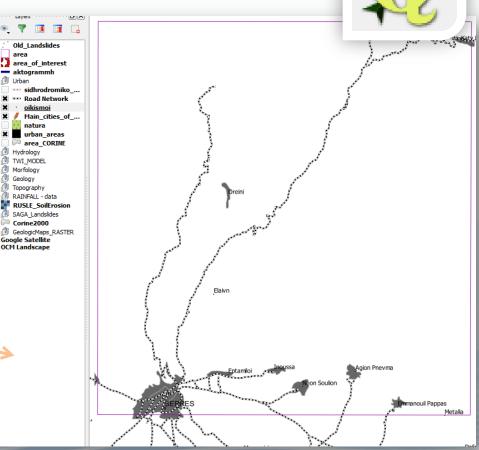
$$\gamma_{\rm app} = \gamma * (1 - m) + \gamma_{\rm sat} * m$$

If totally dry slope, then $\gamma_{app} = \gamma$ (m=0%)

If totally saturated slope, then $\gamma_{app} = \gamma_{sat}$ (m=100%) φ': effective angle of friction of geomaterial (⁰)
c': effective cohesion of geomaterial (kPa),
γ: specific weight (kN/m³),
β: slope angle (Deg),
γ_w: specific weight of the water (kN/m³),
z: normal thickness of the failure slab (m)
m: percentage of the water saturated failure slab (%)

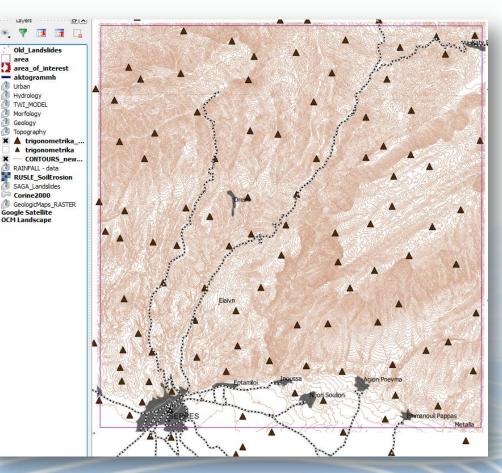
C. LHA Factor of Safety -Data requirements

- Scale of Implementation 1:50.000
- Topographic data (topographic Maps, elevation data, lattice points etc). In case topographic data at a 1:50.000 scale are not available, ASTER DEMs can be used at the expense of accuracy.
- Geologic Maps
- Engineering geologic/geotechnical parameters (Cohesion, Friction angle, unit weight)
- Ground Motion data (PGA values)
- Mean Monthly Rainfall (mm) and MAX daily precipitations



Basic Info – Starting a Project in

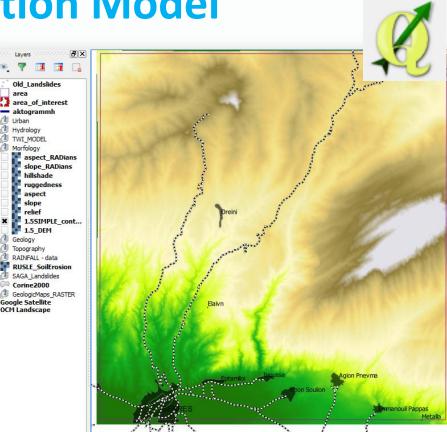
- Set REFERENCE SYSTEM
- Input General data
 - Road network
 - Railroad network
 - Urban areasetc
- Define the AREA



Topographic Data

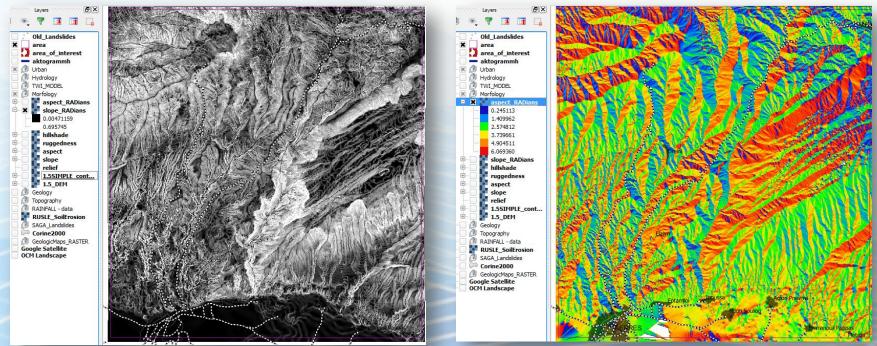
- Input topographic data
 - Contour Lines
 - Elevation points

 Please Note! We will be working on a 1:50.000 (Regional) scale



Digital Elevation Model

- Create a Digital Elevation Model (DEM)
 - You can use your preferred method
 -BUT....
 - Pay attention to the PIXEL
 SIZE. Once defined it can not be changed and all outputs will be based on that. For a 1:50.000 scale map, contours per 20m, a pixel size of 15m is fine!
- In case the DEM covers a larger area, CROP it using the "AREA" polygon.



Slope and Aspect maps

- Create SLOPE and ASPECT maps
 - Please Note! QGIS uses/calculates angles in RADIANS. Conversions in DEGREES may be needed in the process

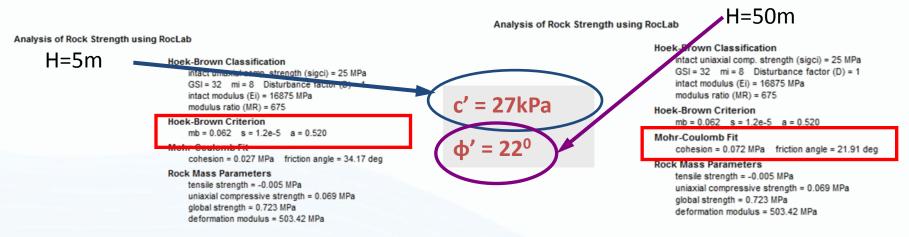
Calculating effective Cohesion (c') and friction angle (ϕ ')

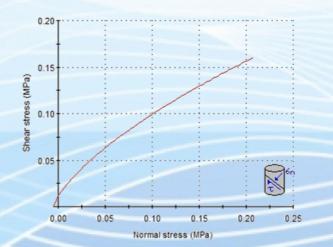
- IF the geological formation is a ROCKMASS, then Hoek and Brown failure criterion is used in order to establish two pairs of (φ' & c') for low and high normal stress (small slope and high slope).
- GSI (Geological Strength Index) and Uniaxial Compressive Strength must be estimated according to rockmass lithology and the condition of the rockmass.

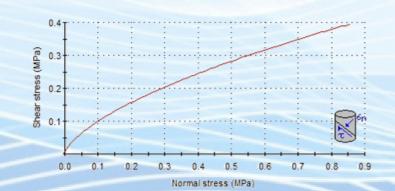
RocLab 1.0

Geotechnical parameters (c', ϕ' , γ)

IF the geological formation is a SOIL, then according to the geological description (see geological maps) values of φ', c' and γ can be attributed according to international bibliography and your experience.


No matter if **SOIL** or **ROCKMASS** is encountered, geotechnical parameters should be estimated or calculated in a conservative way.




Analysis of Rock Strengthussing RocLab

http://www.rocscience.com

http://roclab.software.informer.com/1.0/

Calculating effective Cohesion (c') and friction angle (ϕ')

 Calculate i) Cohesion (c'); ii) angle of Internal Friction (φ); iii) Unit Weight and iv) Hydraulic Conductivity for each of the geologic formations of the area

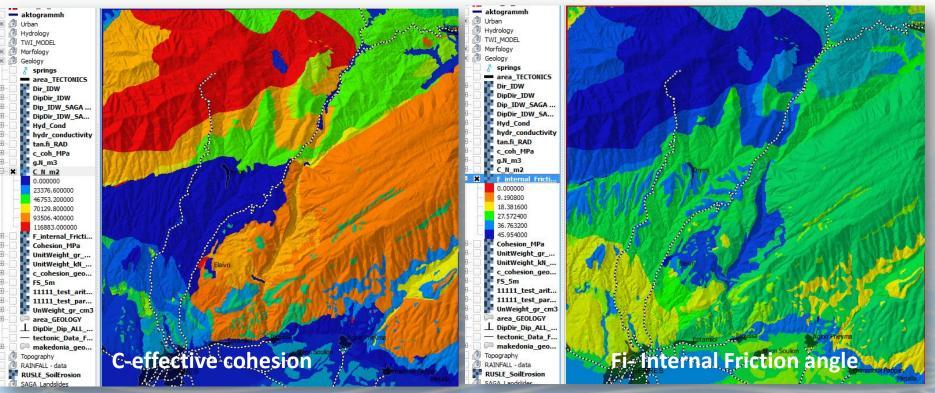
	gn,ab			gn,ab,sch		gn,mr		gn-sch			gn-γ			gn-μν			gn1				
Hoek Brown Classification	H=5m	H=50m		H=5m	H=50m		H=5m	H=50m		H=5m	H=50m		H=5m	H=50m		H=5m	H=50m		H=5m	H=50m	
sigci (Mpa)	100	100		100	100		100	100		100	100		120	120		175	175		100	100	
GSI	30	30		31	31		30	30		29	29		31	31		31	31		33	33	
mi	23	23		23	23		12	12		10	10		26	26		26	26		25	25	
D	1	1		1	1		1	1		1	1		1	1		1	1		1	1	
Ei	40000	40000		30000	30000		85000	85000		30000	30000		48000	48000		70000	70000		30000	30000	
MR	400	400		300	300		850	850		300	300		400	400		400	400		300	300	
Hoek Brown Criterion																					
mb	0.15497	0.15497		0.16645	0.16645		0.08086	0.08086		0.06273	0.06273		0.18816	0.18816		0.18816	0.18816		0.20870	0.20870	
s	8.57E-06	8.57E-06		1.01E-05	1.01E-05		8.57E-06	8.57E-06		7.26E-06	7.26E-06		1.01E-05	1.01E-05		1.01E-05	1.01E-05		1.41E-05	1.41E-05	
a	0.52234	0.52234		0.52089	0.52089		0.52234	0.52234		0.52390	0.52390		0.52089	0.52089		0.52089	0.52089		0.51826	0.51826	
Failure Envelope Range																					
Application	Slopes	Slopes		Slopes	Slopes		Slopes	Slopes		Slopes	Slopes		Slopes	Slopes		Slopes	Slopes		Slopes	Slopes	
sig3max (Mpa)	0.12892	1.04787		0.12946	1.05227		0.12066	0.98074		0.12344	1.00331		0.13236	1.07584		0.13693	1.11300		0.13103	1.06504	
Unit Weight (MN/m3)	0.026	0.026		0.026	0.026		0.025	0.025		0.026	0.026		0.026	0.026		0.026	0.026		0.026	0.026	
Slope Height (m)	5	50		5	50		5	50		5	50		5	50		5	50		5	50	
Mohr-Coulomb Fit																					
c (Mpa)	0.0587	0.2299		0.0616	0.2391		0.0530	0.1798		0.0500	0.1653		0.0685	0.2671		0.0827	0.3084		0.0688	0.2651	
phi (degrees)	51.6	35.1		52.3	35.9		46.3	29.9		43.6	27.4		54.4	38.3		56.7	41.1		54.3	38.0	
Rock Mass Parameters																					
sigt (Mpa)	-0.0055	-0.0055		-0.0061	-0.0061		-0.0106	-0.0106		-0.0116	-0.0116		-0.0065	-0.0065		-0.0094	-0.0094		-0.0068	-0.0068	
sigc (Mpa)	0.2256	0.2256		0.2503	0.2503		0.2256	0.2256		0.2031	0.2031		0.3004	0.3004		0.4380	0.4380		0.3067	0.3067	
sigcm (Mpa)	4.5577	4.5577		4.7751	4.7751		3.2471	3.2471		2.8123	2.8123		6.1073	6.1073		8.9065	8.9065		5.4597	5.4597	
Erm (Mpa)	1128.98	1128.98		869.793	869.793		2399.08	2399.08		825.615	825.615		1391.67	1391.67		2029.52	2029.52		922.432	922.432	
Results																					
	H(m)	ф	c (kPa)	H(m)	ф	c (kPa)	H(m)	ф	c (kPa)	H(m)	φ	c (kPa)	H(m)	ф	c (kPa)	H(m)	φ	c (kPa)	H(m)	ф	c (kPa)
	5	51.61	58.71	5	52.30	61.65	5	46.31	52.98	5	43.63	50.02	5	54.43	68.54	5	56.70	82.66	5	54.27	68.77
	50	35.14	229.90	50	35.88	239.11	50	29.90	179.85	50	27.39	165.30	50	38.29	267.10	50	41.10	308.41	50	38.04	265.11
Final Values		ф	c (kPa)		ф	c (kPa)		ф	c (kPa)		ф	c (kPa)		ф	c (kPa)		ф	c (kPa)		ф	c (kPa
		35	59		36	62		30	53		27	50		38	69		41	83		38	69

Geotechnical Parameters Spatial Distribution

- Digitize the Geologic Map
- Assign additional attributes to geologic formation polygons
 - C: effective Cohesion
 - Fi (ϕ): effective Internal Friction angle
 - Hc: hydraulic conductivity
 - ...etc....
- Please! Pay attention to the respective to each parameter, UNITS

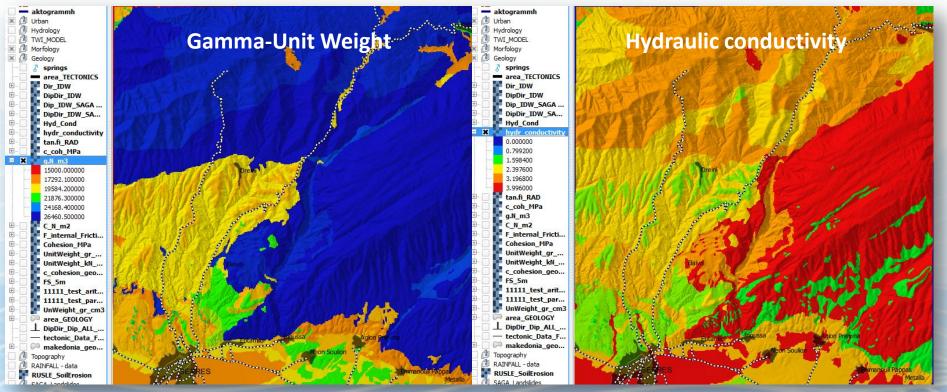
Geotechnical Parameters Spatial Distribution

Layers 🗗 🔀	Geo		Map											
UnWeight_gr 🔺	67				1									
		P		1	2									
ej 🛛		the state and		State (
el1		1 3 J 45 14	N K		3 II .			0	1 20			1		CRATE S
x an.ab	The second							וחי	\mathbb{A}	<u> </u>		(Caller	and the second	
gn,ab,sch				🕺 Attribute tab	le - area_GEC		Gere 2	97 BIE	ЭДU	14	(ら)	100		
gn,mr	the most of the second			// B 🛛	3 <mark>8</mark> 7	, 🗈 📓 🏹 🏹		16						
🗶 💋 gn-sch				IN CC	PERIMETER	AREA [GME_NAME]	DRO CO	C q		g_kN_m3 H	Ivd Conduc C.N	_m2 g.N_	n3 fi_RAD	tan.fi_R
m X gn-γ				0 Pt	17205.425	2618217.828 Κάτω Νευ	121		25 1.800	17.658		0.0000 17658		
mining gn-µv State State Stat	110			1 sch1.gn	281.469	4727.945 Κάτω Νευ	413	30	21 2.700	26.487	1.50000 3000	0.0000 26487	000 0.3665	5 0.38
M-Pl.I.st	國 (19) 利用 新聞語 部		Jan Contraction of the second	2 sch1.gn	2499.046	163905.242 Κάτω Νευ	413	30	21 2.700	26.487	1.50000 3000	0.0000 26487	000 0.3665	5 0.3
M-Pl.st,l,k	A DE RALES	S Marchen S	1	3 mr	1210.219	85442.969 Κάτω Νευ	323		31 2.700	26.487		0.0000 26487		
🗶 🗾 mr			135	4 Pt	4470.918	250013.883 Κάτω Νευ	311		25 1.800	17.658		0.0000 17658		
mr.d	A 64.11/19	21/25	STOP 1	5 mr	466.214	9410.828 Κάτω Νευ	323		31 2.700	26.487	4.00000 9400			
mr-d		1 Smith	20	6 gn,ab	1183.697 1197.833	73727.187 Κάτω Νευ 82850.883 Κάτω Νευ	413 311		35 2.700 38 1.800	26.487 17.658	2.50000 5900	0.0000 26487 0.0000 17658		
Ms.c,st	AMA PULL	Grand V		7 ^{ej} 8 V	20709.849	25583317.827 Αχλαδοχ	222		34 2.650	25.997	3.00000 5300			
Ng.c1		es far	2 600	9 el2	8317.077	1707235.767 Αχλαδοχ	42		38 1.800	17.658		0.0000 17658		
Ng.l1		1 0 0 0 m		10 el1	2211.929	181100.154 Αχλαδοχ	42		32 1.800	17.658		0.0000 17658		
X Ng.l2		Ales SIL	so v	11 al	5339.410	349796.514 Αχλαδοχ	311	5	28 1.800	17.658	2.70000 500	0.0000 17658	000 0.4887	7 0.5
Mg.s		1000 5 1	5 00 1	12 ol	548.239	17449.036 Αχλαδοχ	321	32	19 2.300	22.563	1.50000 3200	0.0000 22563	000 0.3316	5 0.3
Ng.tv-mk	SV I V	A Grain S	5 0 0	13 ol	825.987	28115.140 Αχλαδοχ	321	32	19 2.300	22.563	1.50000 3200	0.0000 22563	000 0.3316	5 0.34
Ng1	CARLAR NO.	102 good	2000 0000	14 ol	2333.586	146100.504 Αχλαδοχ	321	32	19 2.300	22.563	1.50000 3200	0.0000 22563	000 0.3316	5 0.3 4
ol X Pl.c,st	A BLAN	J' & Yaranza		SLC 15 mr	2134.190	285691.607 Αχλαδοχ	323		31 2.700	26.487	4.00000 9400			
× Pl.tr	The sal		2.0 34	2 16 mr	644.204	23543.455 Αχλαδοχ	323		31 2.700	26.487		0.0000 26487		
× Pt		N600 (J.))		17 mr	656.528	15992.729 Αχλαδοχ	323		31 2.700	26.487		0.0000 26487		
Y Pt.c	S S S S S S	A TOS OLU	1 - Cronote 10	18 Pt.t2	7594.766 455.823	727917.380 Αχλαδοχ 11108.927 Αχλαδοχ	121 323		28 1.900 31 2.700	18.639 26.487	2.70000 500 4.00000 9400	0.0000 18639		
🕂 🗶 Pt.l,c	1. 55 Jun 14	13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	al monthe		455.625	11108.927 AXA000X	323		51 2.700	20.467	4.00000 9400	.0000 20407	000 0.5411	(0.80
Pt.l,s		Eptamor	Agion Prey	Show All Fea	tures _									
Pt.sc2	Mult De	the frank	Thebri Souligh The M		•	North States			and another		2 / 1 100	7 1.º 8		
Pt.t1	Mary Contraction	The states of th	A AST		t.sc2 t.t1	Times		1	ma	V. COM	Souligh			all.
		ro and fo				- Jay	SADAD.	conco	-	2000				



Calculating effective Cohesion (c') and friction angle (ϕ ')

 Preparing the parameters for the calculation of Factor of Safety (convert vector to Raster); c' – effective cohesion and φ'-Internal Friction angle



Unit Weight & Hydraulic Conductivity Spatial Distribution

 Preparing the parameters for the calculation of Factor of Safety: Unit Weight and Hydraulic Conductivity (needed to calculate Saturation in SAGA GIS

Thickness and saturation of sliding slab

The Most difficult parameters to estimate for the infinite slope model ! z: normal thickness of the failure slab (m) m: percentage of saturation of the failure slab (%)

- Normal thickness of failure slab (z) is to be determined as a function of slope angle (β), in order to calculate the factor of safety
- Percentage of saturation (m %) needs to be correlated with rainfall (mm) and a mean return period for the rainfall event (if such data exist for the examined region)

Thickness and saturation of sliding slab

 The Normal thickness of failure slab (z) can be defined parametrically (i.e. 1m, 5m, 10m) and taken into account as such or physically based models can be used to link it to soil (and regolith) development natural parameters related to weathering, erosion and deposition (morphometric: slope, curvature, position on slope, etc; hydrologic, geologic etc)

Indicative Relative Research: Dietrich and Reiss, 1995; Catani et.al, 2010; Shafique et.al, 2011.

Potentially useful info:

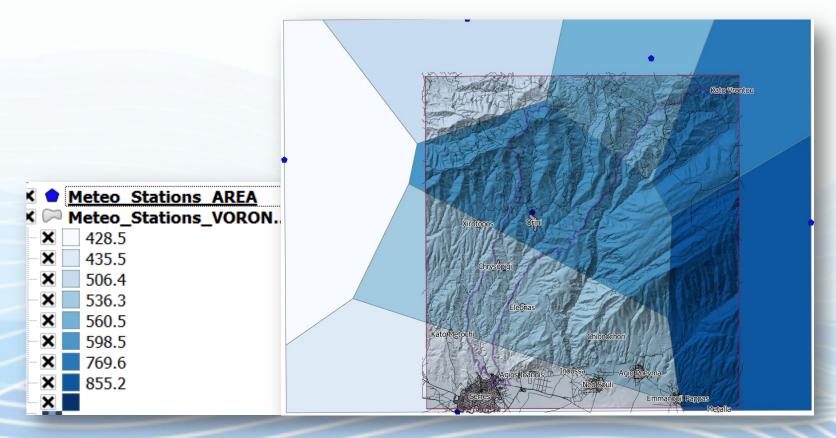
- Pan-European Soil Databases fpr Landslide Mapping (JRC)
- <u>ESDAC Data Inventory</u>
- EU Soils

Common borders. Common solutions. Saturation percentage of sliding slab

- Percentage of saturation (m %) needs to be correlated with rainfall (mm) and a mean return period for the rainfall event (if such data exist for the examined region)
- Create the Saturation Percentage (SP) using the WETNESS module in SAGA GIS
- Please note! The SP is calculated for a respective sliding mass thickness
- References and help are given within SAGA GIS (shown below).

References:

- Beven, K.J., Kirkby, M.J. (1979) A physically-based variable contributing area model of basin hydrology. Hydrology Science Bulletin, 24, 43-69..
- Montgomery D. R., Dietrich, W. E. (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153-1171.

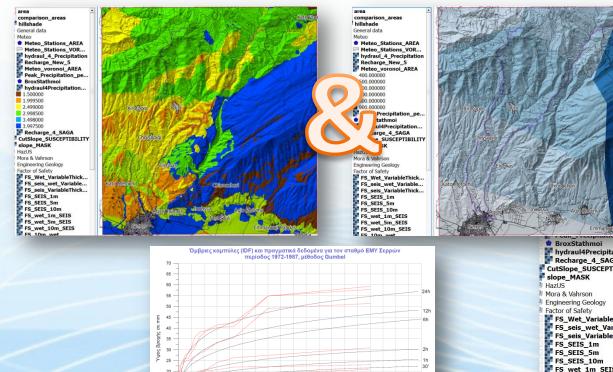


Mean annual Rainfall (mm)

• Location of the Meteorological stations around the pilot implementation area

•

Common borders. Common solutions.


SAGA "Recharge" (m/hour)

15

10

Effective INFILTRATION

PEAK Rainfall (m/hour)

http://users.auth.gr/vmarios/courses/IDF.pdf

Recharge (m/hour)

Agio Rnev

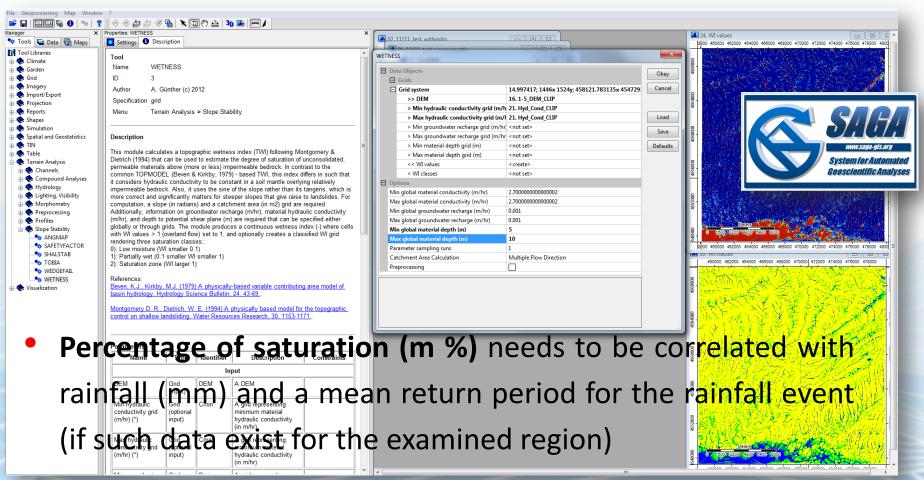
Emmanoull Pappas

Neo Soul

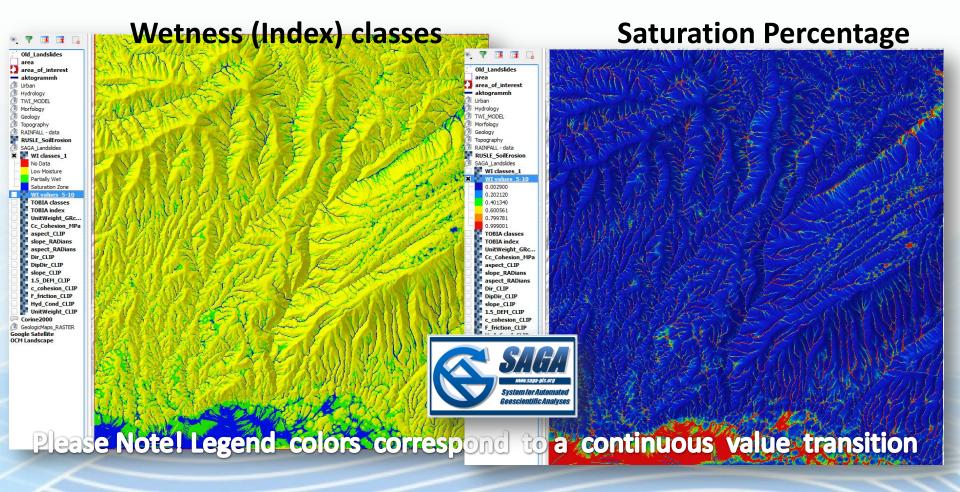
leona

os licennis

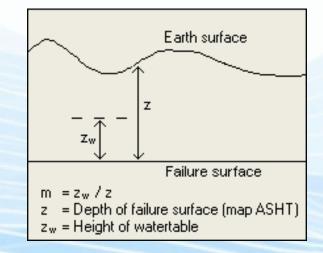
Kato Met



Saturation percentage of sliding slab



Common borders. Common solutions. Saturation percentage of sliding slab



Landslide Hazard – Seismic/Wet conditions

Infinite Slope Model (Factor of Safety for a Wet slope)

$$F = \frac{c' + (z\gamma\cos^2\beta - z\rho\alpha\cos\beta\sin\beta - \gamma_w z_w\cos^2\beta)}{z\gamma\sin\beta\cos\beta + z\rho\alpha\cos^2\beta}$$

φ': effective angle of friction of geomaterial (⁰) c': effective cohesion of geomaterial (kPa), β: slope angle (Deg), ρ: bulk density (Kg/m³) γ: specific weight (kN/m³), $γ_w$: specific weight of the water (kN/m³), a : earthquake acceleration (m/sec²) z: normal thickness of the failure slab (m) m = z_w/z % of the water saturated failure slab

Landslide Hazard – Seismic/Wet conditions

Landslide Hazard is assessed for the following conditions

- **DRY:** Thickness of failure slab 1, 5 and 10m (three cases)
- WET: Thickness of failure slab 1, 5 and 10m (three cases)

Seismic conditions

- DRY: Thickness of failure slab 1, 5 and 10m (three cases)
- WET: Thickness of failure slab 1, 5 and 10m (three cases)

Calculate Factor of Safety– wet–5m thick sliding mass*

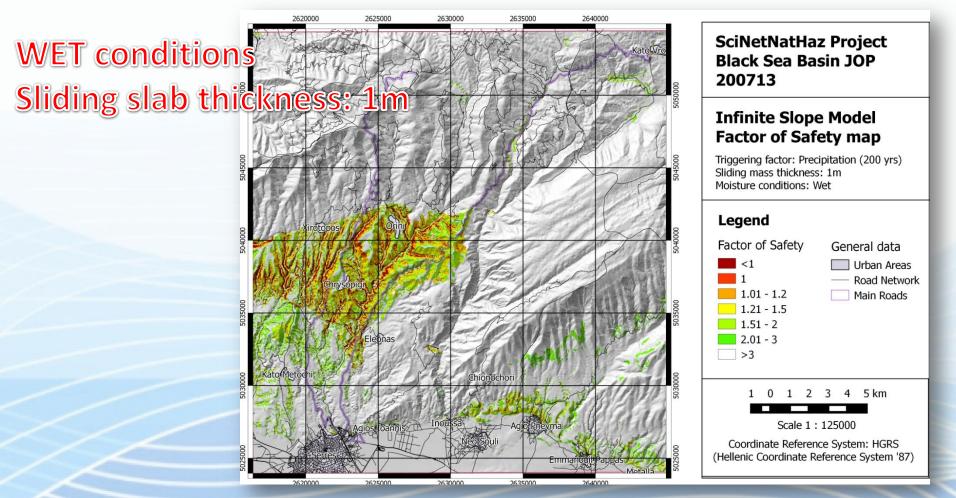
$$F = \frac{c' + (\gamma - m\gamma_w) z \cos^2\beta \tan\phi'}{\gamma z \sin\beta \cos\beta}$$

in which:

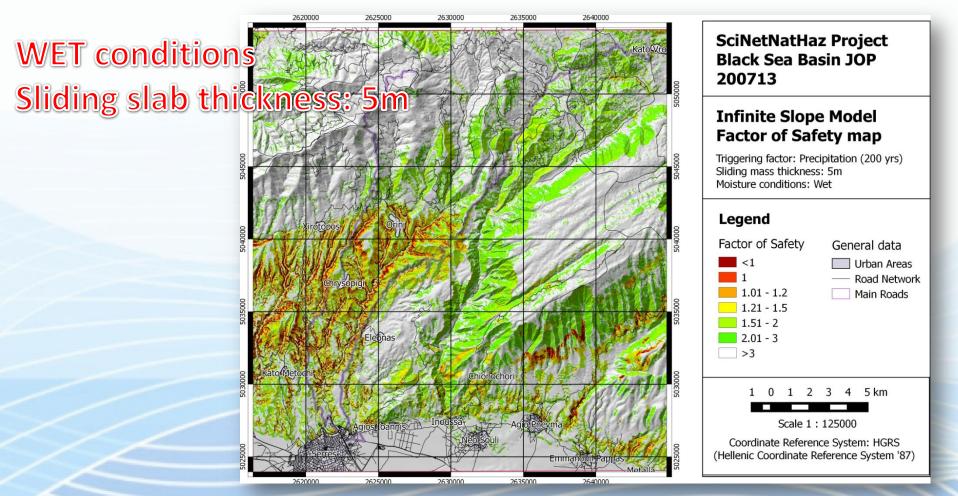
c' = effective cohesion (Pa=
$$N/m^2$$
).

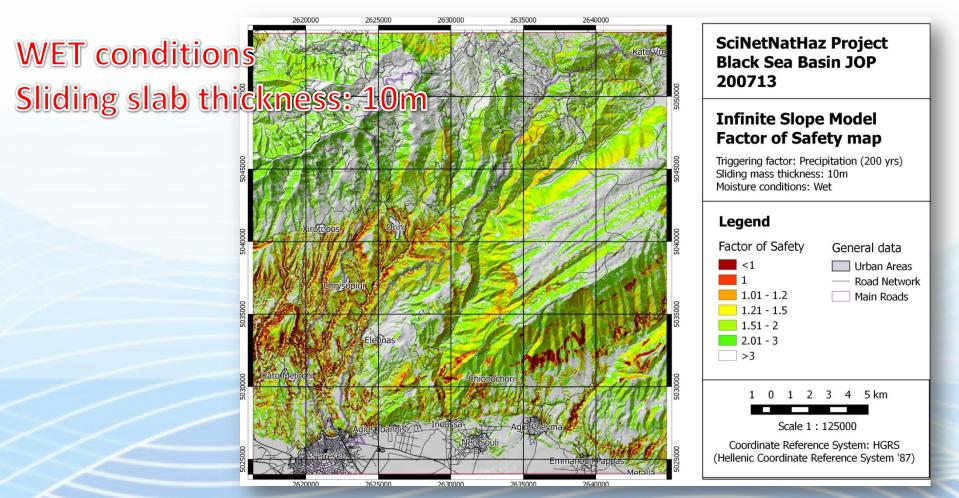
- γ = unit weight of soil (N/m³).
- m = z_w/z (dimensionless).
- $\gamma_{\rm w}$ = unit weight of water (N/m³).
- z = depth of failure surface below the surface (m).
- z_w = height of watertable above failure surface (m).
- β = slope surface inclination (°).
- ϕ [•] = effective angle of shearing resistance (°).

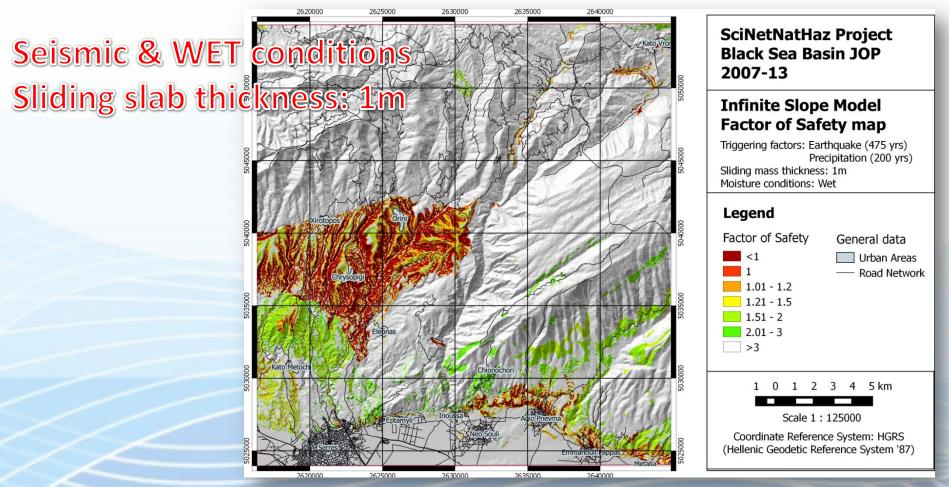
...using the information layers created previously and the RASTER CALCULATOR module in QGIS

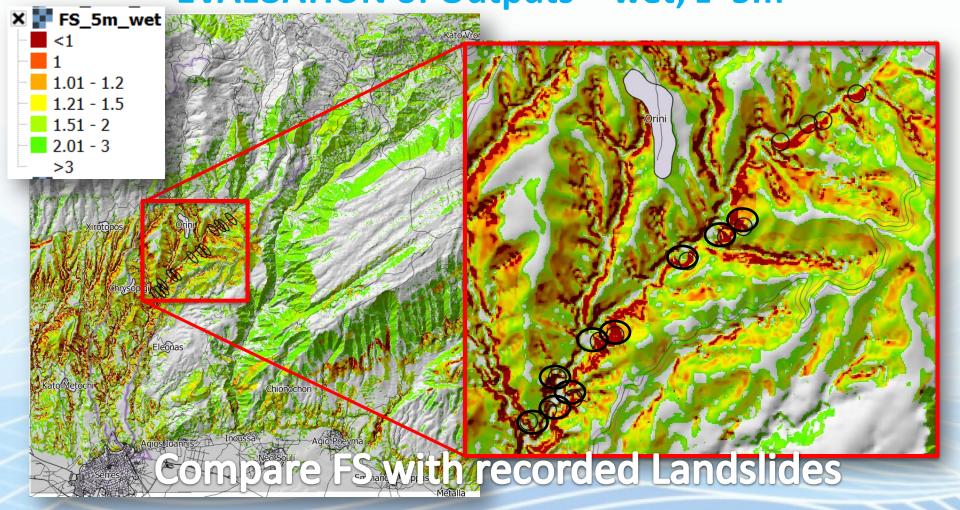

* We are currently working into incorporating a geomorphological model to <u>calculate the soil thickness in the entire area</u>

laster calculat	or								? ×			
aster bands —			R	esult lay	er							
	aronomastis@1"			Output layer Current layer extent								
1.55IMPLE_CO "1.5_DEM@1" "1.5_DEM_CLIF	ntour_POINTS_N	A (Thin Plate Splin										
"Akhladhokh_G "Akhladhokh_G	EOL@1"		X	(min	457930.48722	-	XMax	479980.4872	22			
"Akhladhokh_G "C N m2@1"		Y	' min	4547037.17790	-	Y max	4570332.177	790				
"Catchment Are				Columns	1470	-	Rows	1553	*			
"Cc_Cohesion_ "Cohesion MPa	MPa@1"		▲ ▼ (Output fo	ormat	GeoTIFF			-			
		•		X Add r	esult to project							
Operators -												
	*				•		_	(
+		sqrt	sin			acos		(
-	1	COS	asin		tan	atan)				
<	>	=	<=		>=	AND		OR				
aster calculator "C_N_m2@1" · "tan.fi_RAD@	r expression + ("g.N_m3@1" 1") / ("g.N_m3@	-"WIvalues_5-10 @1**5*sin ("sl)@1" * 1000 ope_RADiar)0) *5° ns@1*)	* cos ("slope_RA * cos ("slope_RA	Dians@1 ADians@1	") * co "))	s ("slope_RAD	Dians@1")			
ression valid	geon	norph	olog	ica	l mod	el t	0	ОК	Cancel			

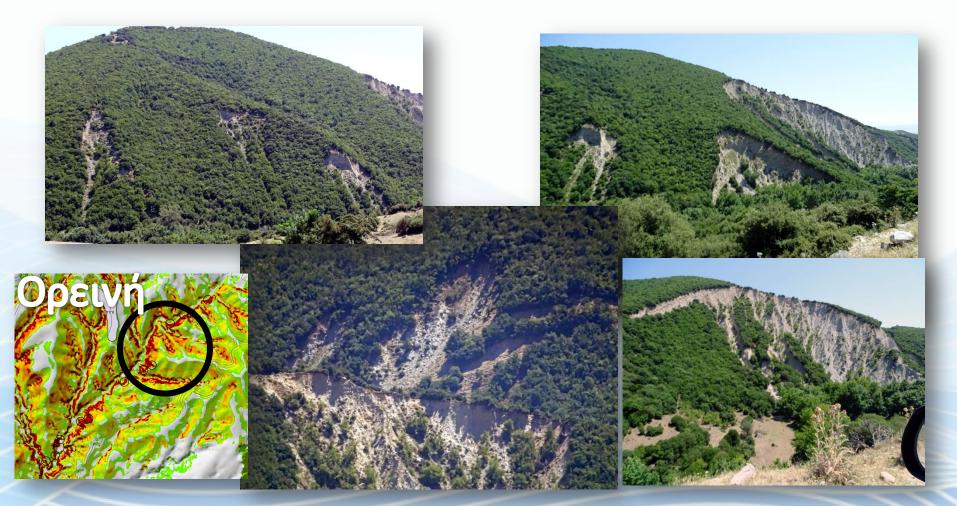








Common borders. Common solutions. EVALUATION of Outputs – wet; z=5m



Common borders. Common solutions. EVALUATION of Outputs – Recorded Landslides

General Conclusions (1/3)

Landslide Susceptibility Assessment, Regional Scale 1:250,000 to 1:25,000 (static & seismic conditions)

- FEMA method (for static conditions: geologic maps + topography maps + hydraulic conditions) needs improvements (introduction of structure of soils/rocks: dip & dip direction of bedding, schistosity, interface of weathered zone and rockmass or soil over rockmass)
- FEMA method (for seismic conditions: geologic maps + topography maps + hydraulic conditions) + Critical Acceleration Index [A_C/PGA] seems to work fine with local GMPEs and "shallow" landslides

General Conclusions (2/3)

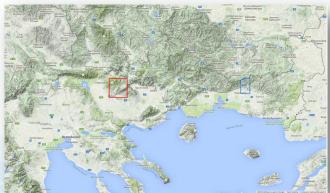
Landslide Hazard Assessment, Regional Scale 1:250,000 to 1:25,000 (static & seismic conditions)

- Factor of Safety method (for static & seismic conditions: geologic maps + topography maps + hydraulic conditions (% of sliding slab saturation) + geotechnical parameters (φ', c') + sliding slab normal thickness). For seismic conditions bulk density (ρ) + earthquake acceleration (a) are needed. The methodology works fine for "shallow" landslides BUT needs some improvement regarding the assessment of sliding slab thickness.
- FEMA method (for seismic conditions: geologic maps + topography maps + hydraulic conditions) + Critical Acceleration Index [A_c/PGA] resulting in the assessment of Permanent Ground Displacements, seems to work fine with local GMPEs and for "shallow type" landslides.

Landslide Hazard Assessment Scales: YOUA Aank Greece SciNe NatHaz Acknowledgments: NatHaz Project ir Attentio National funds within the context of the Black Sea Basin Joint Operational Programme 2007-2013

K. Papatheodorou, TEI of Kentriki Makedonia, Hellas Nikolaos Klimis, Democritus University of Thrace

SciNetNatHaz project Open Seminars, September-October 2015



Landslide Susceptibility -Some additional Info

Landslide susceptibility is closely related to low shear strength surfaces as :

- Bedding
- Schistocity
- Joints

Recording of the later (joints), requires field work thus...local scale implementation (costs in time and money)

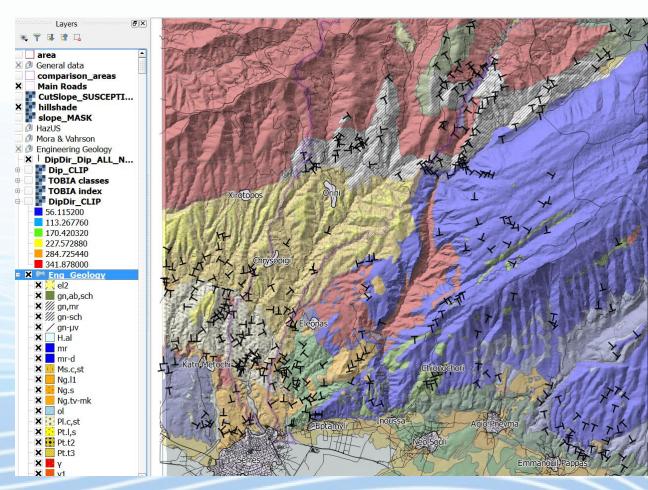
Information regarding the other two parameters, can be digitized from geologic maps (minimal cost)

Landslide Susceptibility Mapping

Create TOBIA index and Classes..

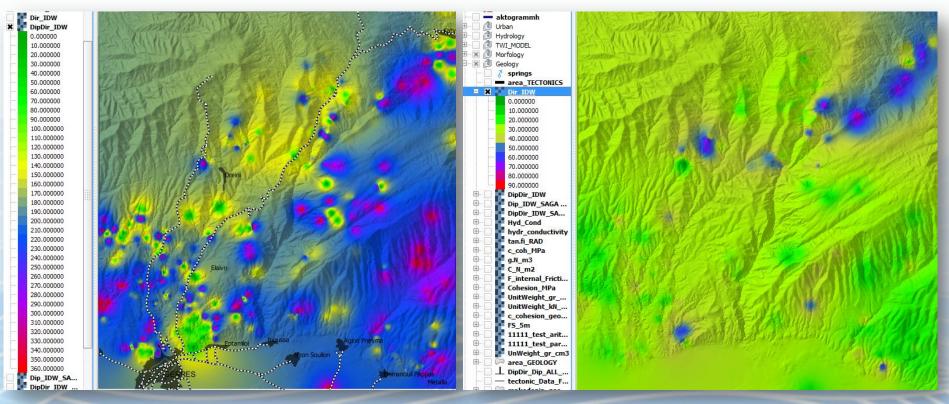
- ..Using the respective SAGA GIS module and..
- ...Slope, Aspect, Dip and DipDirection maps

Meentemeyer R. K., Moody A. (2000). Automated mapping of conformity between topographic and geological surfaces. Computers & Geosciences, 26, 815 - 829.



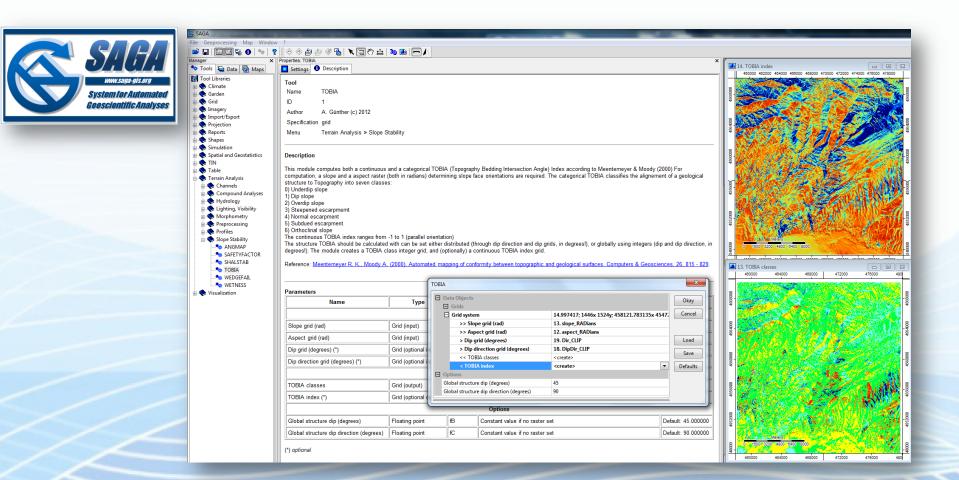
Landslide Susceptibility Mapping

Digitize Bedding and Schistocity orientation (Dip & Dip Direction) from geologic maps

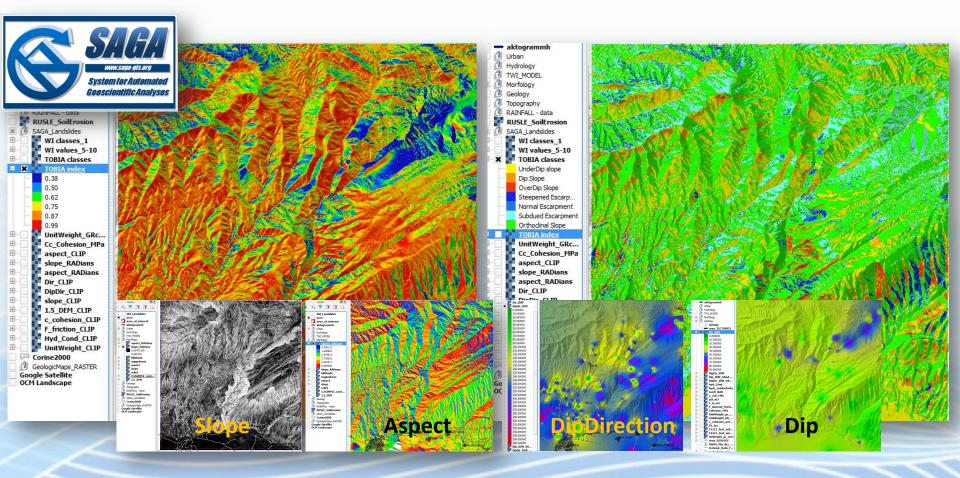


Landslide Susceptibility Mapping

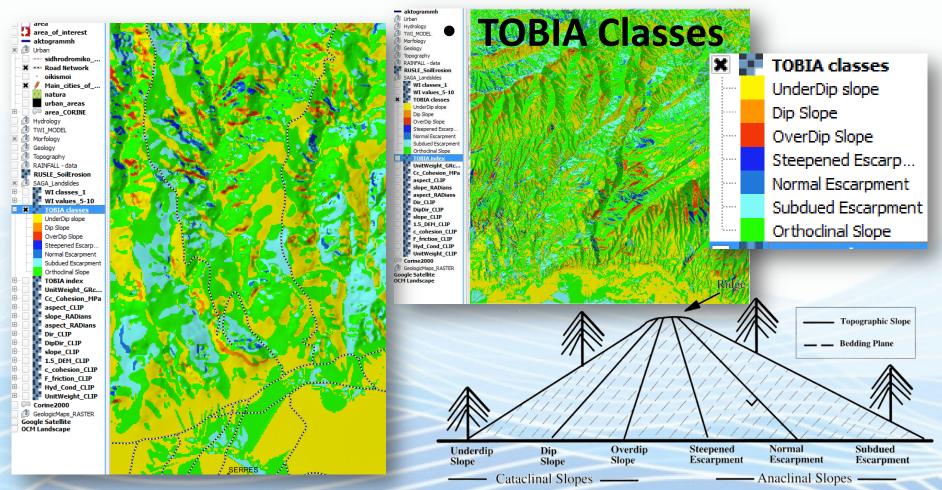
• Create spatial distribution maps of each parameter using the IDW method (does not exceed minimum-maximum value limits)



Use SAGA "TOBIA" module to



..compare Slope with Dip and Aspect with DipDirection..



..and create TOBIA Index classes..

Landslide Hazard Assessment al Scales: <u>legion</u> aan Greece SciNe NatHaz Acknewledgments: Attentio el NatHaz Project enc National funds within the context of the Black Sea Basin Joint Operational Programme 2007-2013

K. Papatheodorou, TEI of Kentriki Makedonia, Hellas Nikolaos Klimis, Democritus University of Thrace

SciNetNatHaz project Open Seminars, September-October 2015