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Typical characteristics

* Their triggering factor is rainfall

» They are generally 2-5 m deep
* They occur on steep slopes

» They can be classified as “fast landslides”

= Ground water table is well below the ground
surface, soils are unsaturated initially

» Residual soils (decomposition or rock in-place):
sandy, silty

= Translational or rotational slides



For early warning systems statistical rainfall intensity-duration
(I-D) thresholds have been proposed in the literature.
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Objective of the research

to develop a physically-based model for
prediction of rainfall triggered landslides (i.e.
determine triggering rainfall intensity-duration
threshold),

to lead toward an early warning system taking
Into account the physical mechanism of the
problem.
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The mechanism

Numerical Simulations
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Numerical study — A parametric study (changes in soil properties on I-D)

How SWCC can affect unsaturated seepage and slope stability?
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Numerical study — A parametric study (changes in soil properties on I-D)

Soil gradation was found to be the most important factor that can cause
significant changes in location and shape of the I-D thresholds.
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- Laboratory model tests to determine the
triggering rainfall intensity-duration

- Landslide hazard assessment



Laboratory model tests
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La boratory WOrkS — material properties (SWCC)

* Hanging column setup (0-80 kPa)
* Pressure plate setup (50-1500 kPa)
e Capillary tube

were designed and manufactured at METU geotechnical laboratory.
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La boratory WOrkS — material properties (HCF)

 Infiltration column setup (through dry medium)

was designed and manufactured at METU geotech. lab.
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Laboratory works — flume model tests (setup)

A laboratory setup that includes a flume box, rainfall system and raising setup was
designed bv the author and manufactured for METU geotechnical laboratory.
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La boratory WOrks — flume model tests (sample preparation)




Laboratory works — flume model tests (test results)

* Tensiometers (suction-time)
e Wetting front

* Inclinometers

* Failure surface
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Rainfall Intensity-Duration thresholds

Rainfall intensity, | (mm/hr)
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Numerical simulations — finite slopes (flume experiments)

* Geometry & Boundary Conditions
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Numerical simulations — infinite slopes (MATLAB code)
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Currently, we are working on Landslide hazard
assessment using:

* TRGRS by USGS
* SLIDE model by Japanese researchers
* Our model

Ahmadiadli, TUBITAK post-doc funding
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« Among countries and even within any one country there
IS seldom uniformity in terminology and the results of the
landslide zoning are often not precisely defined these
maps have different accuracy and reliabllity.

« Maps are currently prepared using a variety of input
data that can be either qualitative or quantitative.

* In some countries, the data required for an appropriate
guantitative landslide hazard zoning are unavailable.

Landslide susceptibility zoning usually involves developing
an inventory of landslides which have occurred in the
past together with an assessment of the areas with a
potential to experience landsliding in the future



There I1s no unique procedure capable of estimating the
potential of failure of each type of landslide and its
expected travel distance. In fact, the conditioning factors
(.e. slope angle, lithology, groundwater conditions,...) are
specific for each landslide mechanism.

Because of this, it will often be necessary to assess
separately susceptibility, hazard and risk, for the different
types of landslides affecting the area (i.e. for rock falls,
small shallow landslides and deep-seated large landslides)
and to present the results in specific zoning maps as the
recommendations or the statutory obligations to mitigate
the risk might differ for the different landslide types. These
maps may be combined onto one map.



Landslide zoning mapping scales and their application

Scale
description

Indicative
range of

scales

Examples of zoning application

Typical area of
zoning

Small

Medium

Large

Detailed

<1:100,000 Landslide inventory and susceptibility

1:100,000
to 1:25,000

1:25,000 to
1:5000

=5000

to inform policy makers and the
general public

Landslide inventory and susceptibility
zoning for regional development; or
very large scale engineering projects.
Preliminary level hazard mapping for
local areas

Preliminary level hazard mapping for
local areas

Landslide inventory, susceptibility
and hazard zoning for local areas
Intermediate to advanced level hazard
zoning for regional development.
Preliminary to intermediate level risk
zoning for local areas and the
advanced stages of planning for large
engineering structures, roads and
railways

Preliminary to intermediate level risk
zoning for local areas and the
advanced stages of planning for large
engineering structures, roads and
railways

Intermediate and advanced level
hazard and risk zoning for local and
site-specific areas and for the design
phase of large engineering structures,
roads and railways

=10,000 km?*
square kilometres

1000-10,000 km?
square kilometres

10-1000 km?
square kilometres

Several hectares to
tens of square
kilometres




Recommended descriptors for hazard zoning

Hazard Rock falls from Slides of cuts and Small Individual
descriptor natural cliffs or fills on roads or landslides on  landslides on
rock cut slope railways natural slopes natural slopes
Number/fannum/km Number/annum/ Number/km?/ Annual
of cliff or rock cut km of cut or fill  annum probability of
slope active sliding
Very high =10 =10 =10 1071
High 1to10 1to 10 1to10 107°
Moderate 0.1to 1 01tol 0.1to1 10 to 1074
Low 0.01 to 0.1 0.01 to 0.1 0.01 to 0.1 107°
Very low  <0.01 =0.01 <001 <107"
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Observed landslide
references (e.g. BDMvT)

Susceptibility map

[ No susceptibility [ Departments with accurate landslide information
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@ Landslide reference

Figure 2. (A) Example of landslide susceptibility map for France according to the Tier 1 approach, showing two susceptibility
classes: (B) Simplified landslide inventory map of France based on the BDMvT database. indicating the completeness of the
database information for each department.
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Figure 3. (A) Distribution of landslides with human consequences in Italy from AD 1279 to 2002. The size of the symbol indicates
the intensity of the event: Small symbol: 1 dead or missing person: medium symbol. 2—10 deaths or missing persons: large symbol.
more than 10 deaths or missing persons. Open symbols indicate sites where injured people. homeless people. or evacuated people

were reported (Guzzetti et al. 2005a): (B) Landslide susceptibility map of Italy (Giinther et al. 2008).



