

SciNet

www.scinetnathaz.net

Common borders. Common solutions.

Landslide Hazard Assessment on Regional and Local Scale: Internetion in Greece

Acknowledgments: The SciNetNatHaz Project is partially funded by the EU and National funds within the context of the

Black Sea Basin Joint Operational Programme 2007-2013

N. Klimis, Democritus University of Thrace, Hellas **K. Papatheodorou**, TEI of Kentriki Makedonia, Hellas

SciNetNatHaz project – Final Stakeholders Meeting – Istanbul, November 2015

Acknowledgments

The whole research team that has been involved and worked **for LHA on Regional and Local scale**:

- Stelios SKIAS, Associate Professor DUTh
- Yannis MARKOU, Associate Professor DUTh
- Manos PSAROUDAKIS, Civil Engineer DUTh, MSc UoPatras
- Theologos LAZARIDIS, Civil Engineer DUTh, PhD Bristol University
- Eleni PETALA, Civil Engineer DUTh, PhD candidate
- Yannis GKIOUGKIS, Geologist AUTh, PhD candidate
- Konstantia MAKRA, Dr Civil Engineer AUTh, Senior Researcher ITSAK-EPPO
- Manos ROVITHIS, Dr Civil Engineer, Researcher ITSAK-EPPO

Landslide Hazard Assessment in the Blaxi area. The....Gaps!

- Usable Data are lacking. Inventories of past landslides do not exist or are not accessible.
- Metadata are not supplied so it's very difficult to assess reliability and accuracy of available data (if found!).
- Different LHA methodologies are used even in the same country, making comparison of outputs, impossible.
- Hazard identification & Risk assessment on regional and on local scales (that could provide the essential information for planning typical preventive measures) has only been sparsely implemented.

Selected, Adapted to local conditions and Applied Methodologies

- A. Mora & Vahrson methodology (Sergio Mora C., & Wilhelm-Gunther Vahrson (1994): Macrozonation Methodology for Landslide Hazard determination. Bulletin of the Association of Engineering Geologists, Vol. XXXI No.1, 1994, pp.49-58.
- B. Federal Emergency Management Agency (FEMA, USA) methodology – HazUS (<u>https://www.fema.gov/hazus</u>)

C. Factor of Safety calculation (Infinite Slope Model & Circular Landslide)

Implementation areas - Hellas

Both areas of pilot implementation fall inside the Black Sea Programme eligible area:

- A. Serres
- B. Komotini-Nymfaia

Scale of Regional Implementation

1:50.000 (input data & analysis)

A. Mora & Vahrson Methodology

Calculates the "Intrinsic Landslide Susceptibility" (SUSC)

Taking into account the: Slope Factor (**Sr**) Lithology Factor (**Sl**) Soil Humidity Conditions (**Sh**)

And the Triggering Factor (TRIG) Derive from the combination of Seismic factor (Ts) Precipitation factor (Tp)

HI = SUSC * TRIG= = (Sr * Sl * Sh) * (Ts + Tp)

Common borders. Common solutions. Classification of Landslide Hazard Indicator (HI) HI = SUSC * TRIG = (Sr * SI * Sh) * (Ts + Tp)

B. FEMA methodology (Hazard US)

Based on empirical and experimental relationships

Areas of pilot implementation on a Regional Scale (1:50.000)

A. Serres

B. Komotini-Nymfaia

Landslide Hazard Assessment (FEMA)

- 1. Assess Landslide Susceptibility (under static conditions)
- 2. Assess the Critical Acceleration (Ac) & compare (Ac/PGA) the Critical Acceleration (Ac) with the actual Peak Ground Acceleration (PGA)

3. Calculate Permanent Ground Displacements

All the above parameters are calculated for two different moisture/groundwater conditions: "DRY" and "WET" whereas "DRY" corresponds to groundwater level BELOW surface of failure and "WET" corresponds to groundwater ON ground surface.

Landslide Susceptibility under static conditions

Table 8. Landslide susceptibility under static conditions

(HazUS MH, Chapter 4 – PESH)

	Geologic Group		S	ope Ang	le, degre	es							
			10-15	15-20	20-30	30-40	>40	scale I: less susceptible					
	(a) DRY (groundwate	coole Vi most sussentible											
A	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, c'=300 psf, \u00f6j = 35°)	None	None	Ι	п	IV	VI						
в	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone, $c' = 0, \phi' = 35^{\circ}$)	None	Ш	IV	v	VI	VII						
с	Argillaceous Rocks (shales, clayey soil, existing landslides, poorly compacted fills, c' =0 $\phi' = 20^{\circ}$)	v	VI	VII	IX	IX	IX						
	(b) WET (groundwater												
A	Strongly Cemented Rocks (crystalline rocks and well-cemented sandstone, $c' = 300 \text{ psf}$, $\phi' = 35^{\circ}$)	None	Ш	VI	VII	VIII	VIII	V					
в	Weakly Cemented Rocks and Soils (sandy soils and poorly cemented sandstone, $c' = 0, \phi' = 35^{\circ}$)	v	VIII	IX	IX	IX	х						
с	Argillaceous Rocks (shales, clayey soil, existing landslides, poorly compacted fills, c =0 $\phi' = 20^{\circ}$)	VII	IX	x	x	x	x						

Landslide Susceptibility under static conditions

Susceptibility under different moisture conditions

is calculated by adding the individual Susceptibilities Per Geologic Group

Landslide Susceptibility under seismic conditions

Limit Equilibrium Method principle: an earthquake is considered as a horizontal force (seismic coefficient * weight of the potentially sliding mass of a slope)

Critical Acceleration (A_c) is defined as the horizontal acceleration that produces a $F_s = 1.0$ The ratio: A_c /PGA is the critical parameter to classify susceptibility under seismic conditions.

Calculating the Critical Acceleration A_c

Critical Acceleration (A_c) is a complex function of **slope**, **geology**, **steepness**, **groundwater table**, **type of landsliding** & **history of previous slope performance**.

Permanent Ground Displacements (PGD) assessment

The FEMA method is based on the assessment of PGD (Permanent Ground Displacements) for landslides (Goodman and Seed, 1966)

$E[PGD] = E[d/A_{is}]*A_{is}*n$

A_{is}: induced acceleration (g) – A_{is} = PGA n: number of cycles (function of earthquake magnitude M_w) E[d/A_{is}]: expected displacement factor for each cycle

A_{is} = PGA : for shallow landslides

A_{is} = 2/3*PGA: for massive, deep and large landslides

Figure 4.11 Integration of Accelerograms to Determine Downslope Displacements (Goodman and Seed, 1966).

C. Landslide Hazard Assessment - F_s

Areas of pilot implementation

- A. Serres
- B. Komotini-Nymfaia

Scale of Regional Implementation

1:50.000 (input data & analysis)

Landslide Hazard Assessment - F_s

- Physically based landslide hazard assessment methods are based on modeling of slope failure processes
- the factor of safety F_s computation method (triggering factors: rainfall & earthquake)

LHA Factor of Safety -Data requirements

- Scale of Implementation 1:50.000
- Topographic data (topographic Maps, elevation data, lattice points etc). In case topographic data at a 1:50.000 scale are not available, ASTER DEMs can be used at the expense of accuracy.
- Geologic Maps
- Engineering geologic/geotechnical parameters (cohesion, friction angle, unit weight)
- Ground Motion data (PGA values)

Mean Monthly Rainfall (mm) and MAX daily precipitations

Landslide Hazard– Static conditions / Precipitation

Infinite Slope Model (Factor of Safety)

$$F_{S} = \frac{c' + (\gamma_{app} - m * \gamma_{w}) * z * \cos^{2} \beta * \tan \varphi}{\gamma_{app}} x z * \sin \beta * \cos \beta$$

$$\gamma_{\rm app} = \gamma * (1 - m) + \gamma_{\rm sat} * m$$

If totally dry slope, then $\gamma_{app} = \gamma$ (m=0%)

If totally saturated slope, then $\gamma_{app} = \gamma_{sat}$ (m=100%)

- ϕ' : effective angle of friction of geomaterial (⁰)
- c': effective cohesion of geomaterial (kPa),
- γ: specific weight (kN/m³),
- β : slope angle (Deg),
- γ_w : **specific weight** of the water (kN/m³),
- z: normal thickness of the failure slab (m)
- m: percentage of the water saturated failure slab (%)

Geotechnical Parameters Spatial Distribution

Layers	Geologic	Man											
				2									
			SI.										
			7.	1									
			120										
el1			-				_	-					
el2			r 🖗 🚺			LL_					2	Mary B	Searce Searce
x gn,ab			Ass. Thursday and bells				207	IOH I	1177	<u>(0)(C</u>			
gn,ab,sch			Attribute table	- area_GEOL			29/	INT	신니니				
gn,mr			8	3	🔳 🙆 🔅	۵ 🍳	16	00-0					?
gn-sch							6				m2	L 6 DAD	
🗙 🧱 gn-γ			Pt	17205.425	2618217.828 Kátu		8	Ψ Y 25 1.800	17.658	2.50000 8000	.0000 17658.000	0.4363	0.466
m 🗙 🧧 gn-μν			sch1.an	281,469	4727.945 Káta	o Neu 413	30	21 2,700	26,487	1,50000 30000	.0000 26487.000	0.3665	0.385
H.al			sch1.an	2499.046	163905.242 Kára	ο Νευ 413	30	21 2,700	26,487	1,50000 30000	.0000 26487.000	0.3665	0.385
M-Pl.l,st			mr	1210.219	85442.969 Káru	ο Νευ 323	94	31 2,700	26,487	4.00000 94000	.0000 26487.000	0.5411	0.600
M-Pl.st,l,k			Pt	4470.918	250013.883 Kàtư	ο Νευ 311	8	25 1.800	17.658	2.50000 8000	.0000 17658.000	0.4363	0.466
			mr	466.214	9410.828 Kára	ο Νευ 323	94	31 2.700	26,487	4.00000 94000	.0000 26487.000	0.5411	0.600
x mr-d		6	gn,ab	1183.697	73727.187 Kàtư	ο Νευ 413	59	35 2.700	26.487	2.50000 59000	.0000 26487.000	0.6109	0.700
Ms.c.st		7	ej	1197.833	82850.883 Káru	ο Νευ 311	0	38 1.800	17.658	4.00000 0	.0000 17658.000	0.6632	0.78:
X Ng.c1	MAN MAR FOR	8	γ	20709.849 2	25583317.827 Αχλα	οδοχ 222	53	34 2.650	25.997	3.00000 53000	.0000 25997.000	0.5934	0.674
Ng.c2	and the first	5 5 85 9	el2	8317.077	1707235.767 AxAd	αδοχ 42	5	38 1.800	17.658	4.00000 5000	.0000 17658.000	0.6632	0.78:
🗙 Ng.l1	N I I I I I I I I I I I I I I I I I I I	10	el1	2211.929	181100.154 Αχλα	οδοχ 42	5	32 1.800	17.658	4.00000 5000	.0000 17658.000	0.5585	0.624
- 🗙 🔜 Ng.12	NAR POSSOL	11	al	5339.410	349796.514 Αχλα	οδοχ 311	5	28 1.800	17.658	2.70000 5000	.0000 17658.000	0.4887	0.53
Ng.s			ol	548.239	17449.036 Aχλα	οδοχ 321	32	19 2.300	22.563	1.50000 32000	.0000 22563.000	0.3316	0.344
Ng.tv-mk	SV C Flair	13	ol	825.987	28115.140 Αχλα	οδοχ 321	32	19 2.300	22.563	1.50000 32000	.0000 22563.000	0.3316	0.34
Ng1	12900	200 14	ol	2333.586	146100.504 Aχλα	321	32	19 2.300	22.563	1.50000 32000	.0000 22563.000	0.3316	0.344
	Allan V A AMONTAL	1 2 2 2 2 2 2 15	mr	2134.190	285691.607 Αχλα	οδοχ 323	94	31 2.700	26,487	4.00000 94000	.0000 26487.000	0.5411	0.600
	The and and shares	16	mr	644.204	23543.455 AxAc	323	94	31 2.700	26.487	4.00000 94000	.0000 26487.000	0.5411	0.600
Pt		00 1 0F J 17	mr	656.528	15992.729 AXAG	323 323	94	31 2.700	26.487	4.00000 94000	.0000 26487.000	0.5411	0.600
Pt.c		18	Pt.t2	/594./66	727917.380 AXAG	121 Soox	5	28 1.900	18.639	2.70000 5000	.0000 18639.000	0.4887	0.53
- 🗙 Pt.l,c		he he he	Imr	455.823	11108.927 AXAC	323 JOOX	94	31 2.700	25,487	4.00000 94000	.0000 26487.000	0.5411	1
Pt.l,s	Entariler Hours	Agion Preyma	Show All Feat	rec									
Pt.sc2	Mus M BREAK AND	- Henry Soulion	- Show Air Cat						_				
Pt.t1	Mary Martin Martin	a la san a	× Pt.	sc2	man			50	174	abor Souligh	s have	~	
Pt.t2	SERRES TATATAT	STAN BANK	PL.		- Marry	Contraction of the second	THE .	tran V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MA C		ST A	i I I i
Pt.t3			Metalla										
				-		-							
							-						
											-	-	100

Calculating effective Cohesion (c') and friction angle (ϕ ')

 Preparing the parameters for the calculation of Factor of Safety (convert vector to Raster); c' – effective cohesion and φ'-Internal Friction angle

Unit Weight & Hydraulic Conductivity Spatial Distribution

 Preparing the parameters for the calculation of Factor of Safety: Unit Weight and Hydraulic Conductivity (needed to calculate Saturation in SAGA GIS

Thickness and saturation of sliding slab

 The Normal thickness of failure slab (z) can be defined parametrically (i.e. 1m, 5m, 10m) and taken into account as such or physically based models can be used to link it to soil (and regolith) development;

Indicative Relative Research: Dietrich and Reiss, 1995; Catani et.al, 2010; Shafique et.al, 2011.

Potentially useful info:

- Pan-European Soil Databases fpr Landslide Mapping (JRC)
- ESDAC Data Inventory
- EU Soils

Common borders. Common solutions. Saturation percentage of sliding slab

- Percentage of saturation (m %) needs to be correlated with rainfall (mm) and a mean return period for the rainfall event (if such data exist for the examined region)
- Create the Saturation Percentage (SP) using the WETNESS module in SAGA GIS
- Please note! The SP is calculated for a respective sliding mass thickness
- References and help are given within SAGA GIS (shown below).

References:

- Beven, K.J., Kirkby, M.J. (1979) A physically-based variable contributing area model of basin hydrology. Hydrology Science Bulletin, 24, 43-69..
- Montgomery D. R., Dietrich, W. E. (1994) A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153-1171.

Common borders. Common solutions. Saturation percentage of sliding slab

Factor of Safety – Serres Pilot Implementation Area

Factor of Safety – Serres Pilot Implementation Area

Landslide Hazard – Seismic/Wet conditions

Infinite Slope Model (Factor of Safety for a Wet slope)

$$F = \frac{c' + (z\gamma\cos^2\beta - z\beta\alpha\cos\beta\sin\beta - \gamma_w z_w\cos^2\beta)}{z\gamma\sin\beta\cos\beta + z\rho\alpha\cos^2\beta}$$

φ': effective angle of friction of geomaterial (⁰) c': effective cohesion of geomaterial (kPa), β: slope angle (Deg),

- ρ: bulk density (Kg/m³)
- γ : specific weight (kN/m³),
- γ_w : specific weight of the water (kN/m³),
- a : earthquake acceleration (m/sec²)
- z: normal thickness of the failure slab (m)

 $m = z_w/z$ % of the water saturated failure slab

Factor of Safety – Serres Pilot Implementation Area

Factor of Safety – Serres Pilot Implementation Area

Landslide Hazard– Static conditions / Precipitation

Deterministic Model for circular landslides (Ferentinou et al., 2006)

$$F_{s} = 4.32 * \left[\frac{c'}{\gamma * H} + \sin\beta\right] + 1.22 * (1 - r_{u}) * \frac{\tan\phi'}{\tan\beta} + 0.005$$

 ϕ' : effective angle of friction of geomaterial (⁰)

- c': effective cohesion of geomaterial (kPa),
- γ : specific weight (kN/m³),
- β: slope angle (Deg),

- y : **specific weight** of the water (kN/m³), **H: Height of Slope** (m)
- r_u: **percentage** of the water **saturated** failure slab (γ_w/γ)

EVALUATION of Outputs

Evaluation (among methodologies) by comparison of Outputs

- Complexity, precision of outputs
- Practical use of outputs

Evaluation by comparison of LHA assessment to field records:

- Landslides
- Slope failures

Geotechnical measures taken to stabilize natural and cut slopes

EVALUATION of Outputs – comparison of outputs

Serres PIA – Landslide Hazard Assessment

EVALUATION of Outputs – wet; z=5m, Natural slopes

LHA assessment - Recorded Landslides on Natural slopes

Results & Discussion

- All methodologies require about the same type and accuracy level of data (to the exception of FEMA). Their "feasibility" is therefore linked to the complexity they present to the potential user.
- Mora & Vahrson (M&V) methodology outputs are generalized and relatively crude as a result of the many generalizations embedded in the methodology.
- FEMA's methodology is more complex to use requiring both a number of estimations and reference to diagrams and a lot of intermediate products. Results are more "interesting" than those provided by the M&V methodology, since .
- The Factor of Safety calculation requires a good sense of the engineering properties of rocks but it's the more flexible, relatively easy to implement and precise in terms of the spatial distribution of the calculated Fs.
 Moreover, its outputs can be readily used in other applications.

Weaknesses

- Geologic formations are not homogenous nor isotropic over large areas as are the ones covered by the Landslide Hazard Assessment at a regional scale.
- Fracture zones exhibit much poorer engineering properties than intact rock proportionally to the degree of fracturing.
- Rain water infiltration (which is a triggering factor) and moisture is also related to fracturing.
- Finally, weathering is in most cases, related to fracturing. Weathered zones, rich in clayey minerals with very poor geotechnical behavior, develop in fractured zones.
- As is evident, the incorporation of such a parameter to calculate the Factor of Safety could greatly improve the final estimations

Improving the LHA performance using Remote Sensing

- Fractured zones can be detected using **remote Sensing data**.
- They correspond to "lineaments" in satellite images. Not all lineaments are fractures in rocks so there's a need for a detailed, visual interpretation.
- Landsat TM and ETM+ data were used for both PI areas to map lineaments and detect fractured zones.
- Buffer zones of 15m were drawn around each lineament / fracture, representing a fractured zone of 30m width.
- Rock Engineering parameters were assigned to those zones, taking into consideration the type of rock and its initial properties.
- The new data were incorporated into the initial engineering geologic map and the new map was used for the calculations of the Fs.

Improving the LHA performance using Remote Sensing

Improving the LHA performance using Remote Sensing

Triggering factor: Earthquake Normal thickness of failure slab: 5m Triggering factor: Rainfall (T=50 years) Normal thickness if failure slab: 5m

LHA assessment evaluation – Nymfaia PIA

PIA: vertical axis Komotini-Nymfaia

36 cut slopes along the vertical road axis Komotini – Nymfaia – Hellenic Bulgaria borders

Level of Precision

Common borders. Common solutions. Level of Precision – cut slope O21 (point B)

1.21 < Fs < 2.0 on natural slopes (regional scale)

Common borders. Common solutions. Cut Slope O21 : km: 16+640 – 17+080

Natural Slope : Static Conditions (local scale)

1290_m_Cut_21 _static

g/backup 02-09-2014/disk z_02092014/ερευνητικά ττρογραμματα/bsb_jop_scinetnathazprev_2013-15/landslides/greece/komotini-nymfaia_vertical axis/1207k_orygma21/1207k_gstab/lo21_natural_c3.pl2 Run By: John Smith, XYZ Company 5/6/2015

Cut slope O21: static conditions without any countermeasures

Cut slope 021: Static with countermeasures (nails / passive anchors)

<u>Conditions: Static – 3D Geometry convex cut slope</u>

