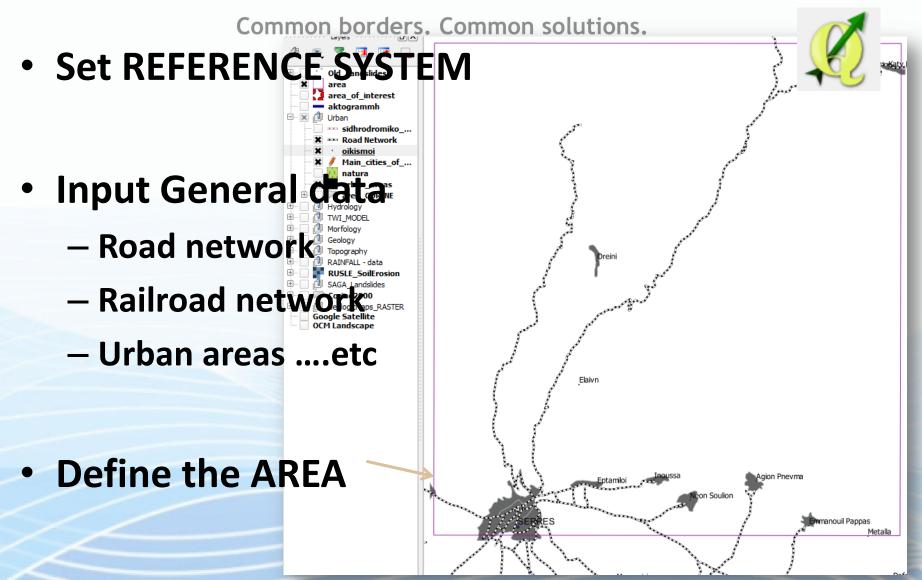
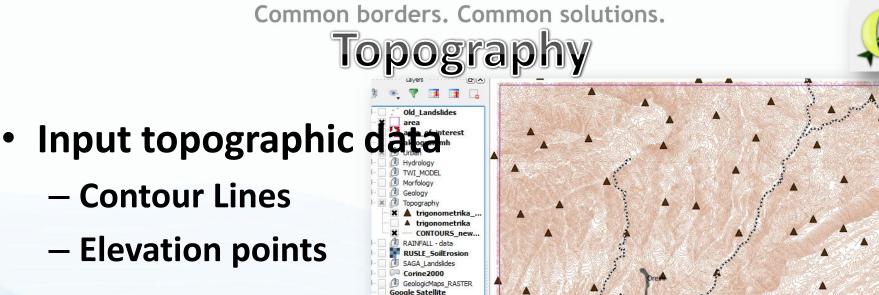


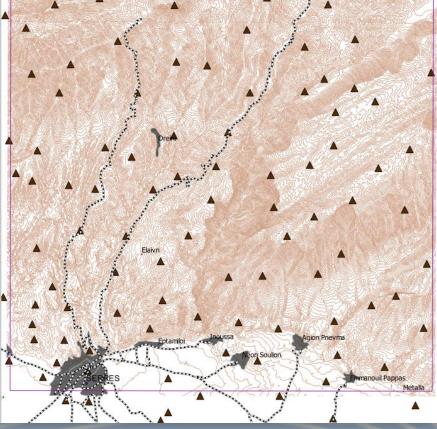
Common borders. Common solutions. Common borders. Common solutions.

Landslide Hazard Assessment


A brief presentation of the SciNetNatHaz adopted approach Phase 1. Calculation of Factor of Safety

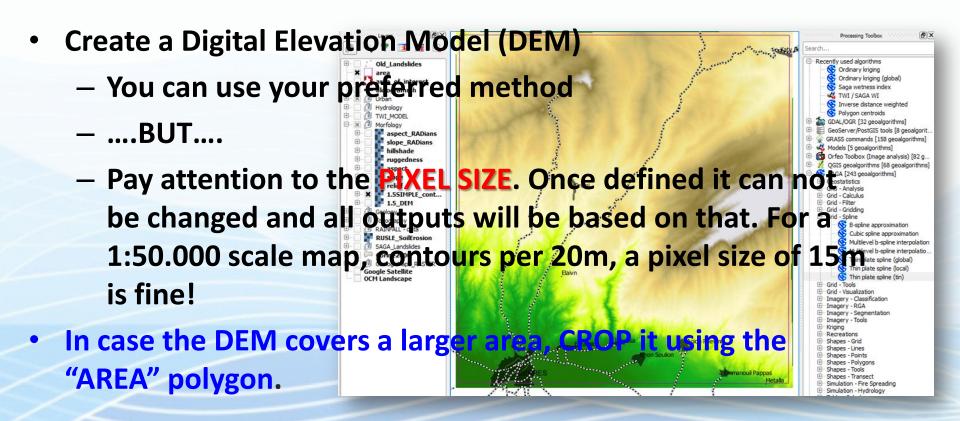
Konstantinos Papatheodorou, Nikolaos Klimis



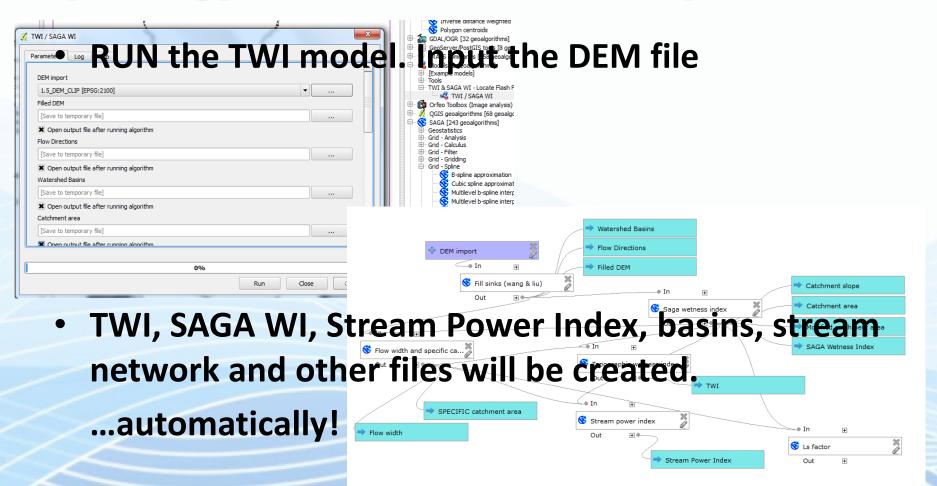


OCM Landscape

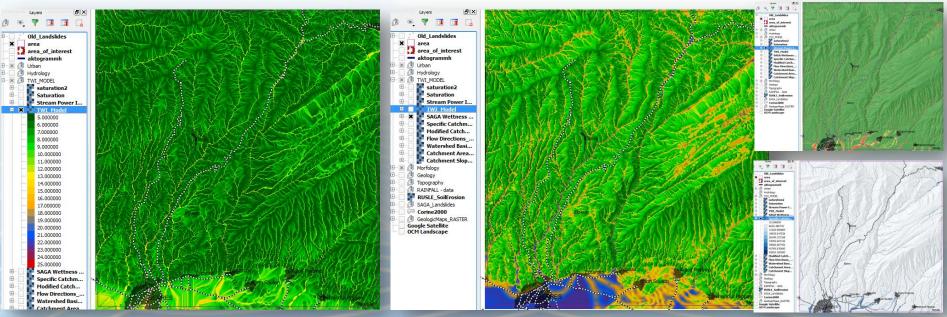
 Please Note! We will be working on a 1:50.000 (Regional) scale



Digital Elevation Model

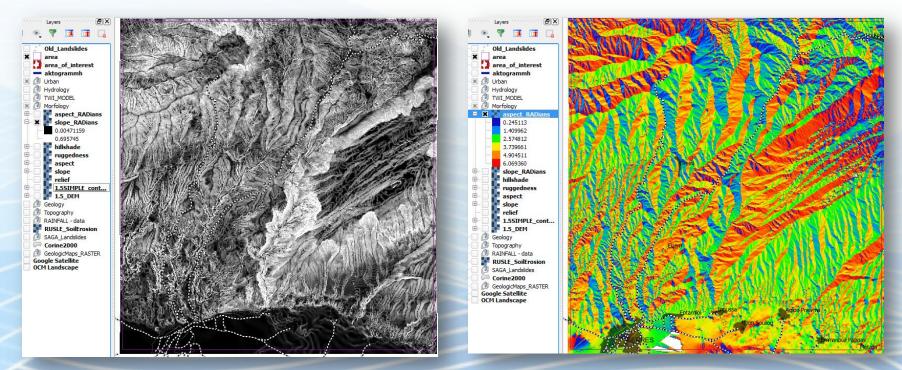


Hydrology-Assessment of Flood prone areas



Indices: TWI, SAGA WI etc

 TWI, SAGA WI, Stream Power Index, basins, stream network and other files created with the model



Common borders. Common solutions. Slope and Aspect maps

• Create SLOPE and ASPECT maps

Please Note! QGIS uses/calculates angles in RADIANS.
 Conversions in DEGREES may be needed in the process

Landslide Hazard Assessment

- Basic Information comes from topographic data (DEM, Slope, Aspect)
- Essential Information comes from the Geologic map
 - -Geologic formations
 - —Dip and Dip Direction
 - -c' (effective cohesion), φ' (effective friction angle), h (hydraulic conductivity), γ (unit weight) etc

Common borders. Common solutions. Geology – Engineering Geology

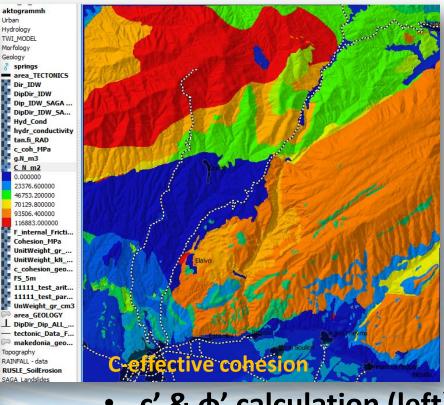
Calculate i) Cohesion (c'); ii) angle of Internal Friction (φ); iii) Unit Weight and iv) Hydraulic Conductivity for each of the geologic formations of the area

	gn,	,ab		gn,a	b,sch		gn	,mr		gn-	sch		gr	η-γ		gn	·μv		gi	า1	
Hoek Brown Classification	H=5m	H=50m																			
sigci (Mpa)	100	100		100	100		100	100		100	100		120	120		175	175		100	100	
GSI	30	30		31	31		30	30		29	29		31	31		31	31		33	33	
mi	23	23		23	23		12	12		10	10		26	26		26	26		25	25	
D	1	1		1	1		1	1		1	1		1	1		1	1		1	1	
Ei	40000	40000		30000	30000		85000	85000		30000	30000		48000	48000		70000	70000		30000	30000	
MR	400	400		300	300		850	850		300	300		400	400		400	400		300	300	
Hoek Brown Criterion																					
mb	0.15497	0.15497		0.16645	0.16645		0.08086	0.08086		0.06273	0.06273		0.18816	0.18816		0.18816	0.18816		0.20870	0.20870	
s	8.57E-06	8.57E-06		1.01E-05	1.01E-05		8.57E-06	8.57E-06		7.26E-06	7.26E-06		1.01E-05	1.01E-05		1.01E-05	1.01E-05		1.41E-05	1.41E-05	
а	0.52234	0.52234		0.52089	0.52089		0.52234	0.52234		0.52390	0.52390		0.52089	0.52089		0.52089	0.52089		0.51826	0.51826	
Failure Envelope Range																					
Application	Slopes	Slopes																			
sig3max (Mpa)	0.12892	1.04787		0.12946	1.05227		0.12066	0.98074		0.12344	1.00331		0.13236	1.07584		0.13693	1.11300		0.13103	1.06504	
Unit Weight (MN/m3)	0.026	0.026		0.026	0.026		0.025	0.025		0.026	0.026		0.026	0.026		0.026	0.026		0.026	0.026	
Slope Height (m)	5	50		5	50		5	50		5	50		5	50		5	50		5	50	
Mohr-Coulomb Fit																					
c (Mpa)	0.0587	0.2299		0.0616	0.2391		0.0530	0.1798		0.0500	0.1653		0.0685	0.2671		0.0827	0.3084		0.0688	0.2651	
phi (degrees)	51.6	35.1		52.3	35.9		46.3	29.9		43.6	27.4		54.4	38.3		56.7	41.1		54.3	38.0	
Rock Mass Parameters																					
sigt (Mpa)	-0.0055	-0.0055		-0.0061	-0.0061		-0.0106	-0.0106		-0.0116	-0.0116		-0.0065	-0.0065		-0.0094	-0.0094		-0.0068	-0.0068	
sigc (Mpa)	0.2256	0.2256		0.2503	0.2503		0.2256	0.2256		0.2031	0.2031		0.3004	0.3004		0.4380	0.4380		0.3067	0.3067	
sigcm (Mpa)	4.5577	4.5577		4.7751	4.7751		3.2471	3.2471		2.8123	2.8123		6.1073	6.1073		8.9065	8.9065		5.4597	5.4597	
Erm (Mpa)	1128.98	1128.98		869.793	869.793		2399.08	2399.08		825.615	825.615		1391.67	1391.67		2029.52	2029.52		922.432	922.432	
Results																					
	H(m)	φ	c (kPa)																		
	5	51.61	58.71	5	52.30	61.65	5	46.31	52.98	5	43.63	50.02	5	54.43	68.54	5	56.70	82.66	5	54.27	68.77
	50	35.14	229.90	50	35.88	239.11	50	29.90	179.85	50	27.39	165.30	50	38.29	267.10	50	41.10	308.41	50	38.04	265.11
Final Values		ф	c (kPa)																		
		35	59		36	62		30	53		27	50		38	69		41	83		38	69

Common borders. Common solutions. Geology – Engineering Geology

Digitize the Geologic Map

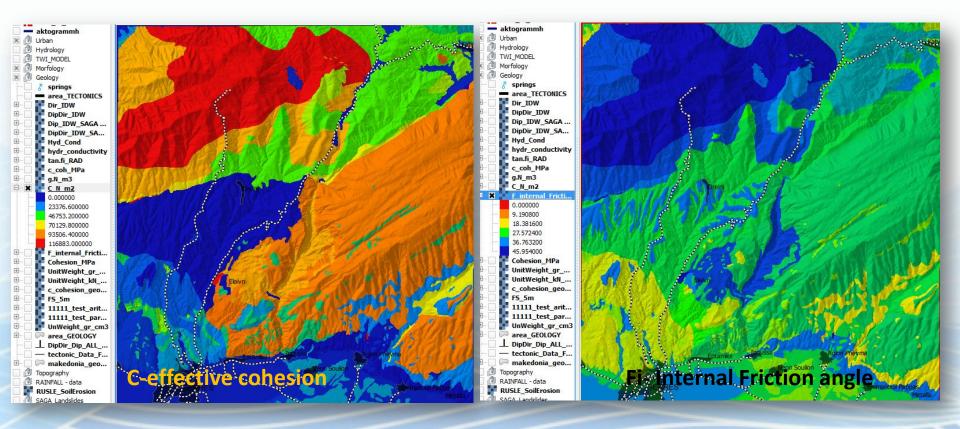
Assign additional attribute	s to geologic formation
	Attribute table - area GEOLOGY :: Features total: 297, filtered: 297, selected: 0
gn,ab gn,ab,sch gn,mr gn,mr gn,sch gn,mr gn,sch	
- X gnsch - X gnγ	
	0 Pt 17205.425 2618217.828 Kárw Nzu 121 8 25 1.800 17.658 2.50000 8000.0000 17588.000 0.4363 0.466 1 sch1.gn 281.469 4727.945 Kárw Nzu 413 30 21 2.700 26.487 1.50000 30000.0000 26487.000 0.3665 0.383 -
File:	spl.gr 2493 t 15395.2 2 4 5 t 15395.2 2 4 5 t 15395.2 2 5 4 5 t 15395.2 2 5 4 5 t 10 2 5 4 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	4 Pt 4470.918 250013.883 Κάτω Νευ 31 8 25 1.800 17.658 2.50000 8000.0000 17658.000 0.4363 0.466 5 mr 466.214 9410.828 Κάτω Νευ 323 94 31 2.700 26.487 4.00000 94000.0000 26487.000 0.5411 0.600
-X mr-d -X Ms.c,st	gn,ab 1183.697 73727.187 Κάτω Νευ 413 59 35 2.700 26.487 2.50000 59000.0000 26487.000 0.6109 0.700 1197.833 82850.883 Κάτω Νευ 311 0 38 1.800 17.658 4.00000 0.0000 17558.000 0.6632 0.78
Ms.c,st Ng.c2 Hc: hydraulic concluctiv	2079.449 25583317.827 AxAa5ox 222 53 34 2.650 25.997 3.00000 25997.000 0.5934 0.674
	9 el2 8317.077 1707235.767 Axhaðox 42 5 38 1.800 17.658 4.00000 5000.0000 17658.000 0.6632 0.781 10 el1 2211.929 181100.154 Axhaðox 42 5 32 1.800 17.658 4.00000 5000.0000 17658.000 0.6632 0.781
- x Ng.s - x Ng.tv-mk	11 al 5339.410 349796.514 AxAabox 311 5 28 1.800 17.658 2.7000 5000.0000 17658.000 0.4887 0.531 12 ol 548.239 17449.036 AxAabox 321 32 19 2.300 22.563 1.50000 32000.0000 2563.000 0.3316 0.344
	13 ol 825.987 28115.140 Αχλαδοχ 321 32 19 2.300 22.563 1.5000 32000.0000 22563.000 0.3316 0.344 14 ol 2333.586 146100.504 Αχλαδοχ 321 32 19 2.300 22.563 1.50000 32000.0000 22563.000 0.3316 0.344
R Pl.c,st Pl.tr	15 mr 2134.190 285691.607 Axhaōox 323 94 31 2.700 26.487 4.00000 94000.0000 26487.000 0.5411 0.600 16 mr 644.204 23543.455 Axhaōox 323 94 31 2.700 26.487 4.00000 94000.0000 26487.000 0.5411 0.600
Pupleased Pay attention to t	
	s verte 2 7542 7347550 w/d by: V sup 5 7542 70 p 5000.0000 18639.000 0.4887 0.53 ▲ 10 mr 455.823 11108.927 Axhaōox 323 94 31 2.700 26.487 4.00000 94000.0000 26487.000 0.5411 0.000 verte 1
Ptsc2 Ptti	Show All Features
parameter, UNIS	Ptsc2 Ptil



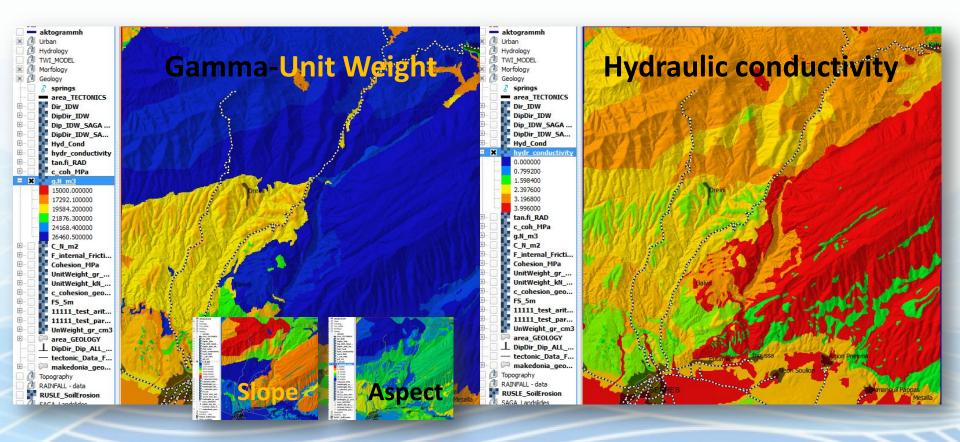
Factor of Safety – Calculate Parameters

Hone Proved Data Data Data Data Data Data Data Proved AddAba AddAba <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>uncog</th></th<>																	uncog
Heat Partice Partice Partice Partice View Add/bit Add/			100		Time		ular bEau	and Frend						- 0	x	× 🗘	
Listen I L <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th>					_												
Calent Calent Calent Constraint	Home Insert Page	Layout	Formulas	Data	Review	View	Add-Ins	ABBYY I	ineReader	11 Acro	obat			0 -	□ X		-
Part Part <t< th=""><th></th><th>- Δ[*] Δ[*]</th><th></th><th></th><th></th><th>General</th><th></th><th>-</th><th></th><th></th><th>👌 🖓 İr</th><th>nsert *</th><th>Σ·Α</th><th>(A)</th><th></th><th></th><th></th></t<>		- Δ [*] Δ [*]				General		-			👌 🖓 İr	nsert *	Σ·Α	(A)			
Fort C Augenetic C Number C State Style Egyler Egyler <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>P 👬 D</th><th>elete 🔹 📋</th><th>3 - Z⊔</th><th></th><th></th><th></th><th>-</th></t<>											P 👬 D	elete 🔹 📋	3 - Z ⊔				-
E0 K K K K K M N G A B C D E F G H I J K L M N G Ecacywyi δεδομένων gn.ab.sch gn.ab.	Paste → B I U · ·	🏈 - 🗛 -			F 🖭 *	- %	, , , , , , , , , , , , , , , , , , , ,					ormat *				5	
Load B C D E F G H I J K L M N C Ecoayuayń δεδομένων gr.ab. gr.ab.sch gr.ab.s	lipboard 🖗 Font	ſ	a l	Alignment	G	Nu	mber	G.	Styl	es	0	lells	Editi	ng		31111	
A B C D E F G H I J K L M N C D L Elcarguoyríð sé šopis/vuov gr.ab. gr.ab., sch	E40 🕶 💿	fx													×		
Elecacy ωγή δεδομένων gr, ab gr, ab, sch H-5m H-50m H-50m H-50m H-50m H-50m H-50m H-50m H-50m H-50m	A	в	С	D	E	F	G	н		J	К	L	м	N	(-		
Index Brown Classification H=5m H=50m H=5m H=50m H=	Εισανωνή δεδομένων	,															
Index Brown Classification H=5m H=50m H=5m <		-															
Heck Brown Classification H=5m H=5m <th< td=""><td></td><td></td><td>ah</td><td></td><td>an 2</td><td>h cch</td><td></td><td></td><td></td><td></td><td></td><td>o ch</td><td></td><td></td><td></td><td></td><td></td></th<>			ah		an 2	h cch						o ch					
sigci (Mpa) 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>								-			-				_		
Science 30 30 31 31 31 31 31 32 29 31 3 30 30 31 30 300 300 300 300 300 300 300 300 300 300																	
1 13 23 23 23 12 12 12 10 10 10 26 2 2 0 1 <																	
D 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>		_													-		
2 EI 40000 40000 30000 30000 8500 8500 30000 3000 4400 480 0 MR 400 400 300 300 300 850 300 300 300 400 460 0 MR 400 400 400 300 300 300 300 300 400 46 1 Hock Brown Criterion -															- 4	-	
0 MR 400 400 300 300 300 850 850 300 300 400 40 1 Hoek Brown Criterion - <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>480</td> <td></td> <td></td>		-						-							480		
I Heek Brown Criterion Diff Di																	
2 mb 0.15497 0.15497 0.16645 0.06086 0.08086 0.06273 0.06273 0.16816 0.16 3 5 6.57E-06 8.57E-06 1.01E-05 8.57E-06 7.26E-06 7.26E-06 1.01E-05 1.01E-05 1.01E-05 0.52234 0.52239 0.52390 0.5260 0.026		400	-00		500	500		0.50	0.50		550	500		400	-+(
3 s 8.57E-06 8.57E-06 1.01E-05 1.01E-05 1.01E-05 8.57E-06 7.26E-06 7.26E-06 7.26E-06 1.01E-05 1.01E 1.01E 1.01E 4 a 0.52224 0.52224 0.52234 0.52234 0.52234 0.52234 0.52390 0.5330 0.1244 1.012-05 1.01E-05		0.15497	0.15497		0.16645	0.16645		0.08086	0.08086		0.06273	0.06273		0.18816	0.18		
4 a 0.52234 0.52234 0.52289 0.52289 0.52234 0.52239 0.52390 0.533 0.563 5.5 5<0		_															
5 Failure Envelope Range 0 <td>4 a</td> <td></td> <td>+</td> <td>100 March 100</td>	4 a															+	100 March 100
6 Application Slopes Slops Slopes Slopes	5 Failure Envelope Range																
2 isg2max (Mpa) 0.12882 1.04787 0.12846 1.02327 0.12066 0.98074 0.12344 1.00331 0.12326 1.07 3 blink Weight (MN/m3) 0.026 0.026 0.026 0.025 0.026 <t< td=""><td>6 Application</td><td>Slopes</td><td>Slopes</td><td></td><td>Slopes</td><td>Slopes</td><td></td><td>Slopes</td><td>Slopes</td><td></td><td>Slopes</td><td>Slopes</td><td></td><td>Slopes</td><td>Slo</td><td></td><td></td></t<>	6 Application	Slopes	Slopes		Slopes	Slopes		Slopes	Slopes		Slopes	Slopes		Slopes	Slo		
8 Unit Weight (MM/m3) 0.026 0.026 0.026 0.025 0.026 0.016 0.0116 -0.0	7 sig3max (Mpa)	0.12892			0.12946			0.12066			0.12344	1.00331		0.13236	1.07		
9 Slope Height (m) 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 5 50 70	8 Unit Weight (MN/m3)	0.026	0.026		0.026	0.026		0.025	0.025		0.026	0.026		0.026	0.0		
0 Mohr-Coulomb Fit 0.0557 0.229 0.0616 0.2391 0.0530 0.1798 0.0500 0.1653 0.0656 0.2 2 ph1 (degrees) 51.6 35.1 52.3 35.9 46.3 29.9 43.6 27.4 54.4 38 3 Rock Mass Parameters - <	9 Slope Height (m)	5	50		5	50		5	50		5	50		5	5		
1 ((Mpa) 0.0537 0.2299 0.0616 0.2391 0.05030 0.1633 0.0506 0.1633 0.0605 0.2 2 (Mpa) 51.6 35.1 52.3 35.9 46.3 29.9 43.6 27.4 54.4 36 3 Rock Mass Parameters - 0.016 - - 0.016 - - 0.016 - - 0.0016 - 0.016	0 Mohr-Coulomb Fit																
2 prin (degrees) 51.6 35.1 52.3 35.9 46.3 29.9 48.6 27.4 54.6 27.4 54.6 36.7 36.9 46.3 29.9 48.6 27.4 54.6 27.4 54.6 36.7 36.9 46.3 29.9 48.6 27.4 54.6 27.4 54.7 36.9 48.6 27.4 54.6 27.4 54.6 27.4 54.7 36.9 48.6 27.4 56.7 47.6 27.6 50.016 -0.016 -0.016 -0.016 -0.016 -0.016 0.2031 0.2031 0.3004 0.3 6.177 51.7 13.7751 3.7751 3.2471 2.8123 5.103 5.107 139.67 139 7 Fm (Mpa) 1128.98 128.98 869.793 2399.08 2399.08 825.615 1391.67 139 7	1 c (Mpa)	0.0587	0.2299		0.0616	0.2391		0.0530	0.1798		0.0500	0.1653		0.0685	0.2	1	
δ HOCK MASS Parameters -0.005	2 phi (degrees)	51.6	35.1		52.3	35.9		46.3	29.9		43.6	27.4		54.4	38		
a rger (mps) -0.0005 -0.0005 -0.0001 -0.0006<	3 Rock Mass Parameters																
5 ige(m (hpa) 0.2256 0.256 0.2563 0.2565 0.2364 0.2031 0.2044 0.3 6 ige(m (hpa) 4.5577 4.7751 4.7751 3.2471 2.8123 6.1073 6.107	24 sigt (Mpa)																
0 regr(m(mpa) 4		_															
2 112.5.5 112.5.5 112.5.5 112.5.5 112.5.5 112.5.5 112.5.5 113.1.0 131.0 </td <td></td> <td>_</td> <td></td> <td>+</td> <td></td>		_														+	
9 Aποτελέσματα H(m) φ c(kPa) Ka s		1128.98	1128.98		869.793	869.793		2399.08	2399.08		825.615	825.615		1391.67	139	E.A	
ο Αποτελέσματα H(m) φ c(kPa) H(m) φ c(kPa) H(m) φ c(kPa) H(m) φ c(kPa) KBUSL 1 H(m) φ c(kPa) S																	
0 Arkotexedplata H(m) φ c(kPa) SAGA SAGA <td></td> <td>-</td> <td></td> <td>- INFILITE F</td>		-															- INFILITE F
1 H(m) φ c(kPa) S		_														F A	
3 50 35.14 229.90 50 35.88 239.11 50 29.90 179.85 50 27.39 165.30 50 38 5 TEΛΙΚΕΣ ΤΙΜΕΣ φ c (kPa) φ c (kPa) φ c (kPa) φ c (kPa) ¢ c (kPa) ¢ c 6 35 59 36 62 30 53 27 50 35	1														•		JAGA
4 5 ΤΕΛΙΚΕΣ ΤΙΜΕΣ 6 35 59 36 62 30 53 27 50 3	2	_															
5 ΤΕΛΙΚΕΣ ΤΙΜΕΣ φ c (kPa) φ φ c (kPa) φ φ c (kPa) φ φ c (kPa) φ φ φ c (kPa) φ φ	3	50	35.14	229.90	50	35.88	239.11	50	29.90	179.85	50	27.39	165.30	50	38		
6 35 59 36 62 30 53 27 50 3	34	-			-			-									
7	5 ΤΕΛΙΚΕΣ ΤΙΜΕΣ	_	· ·			· ·			· ·	<u> </u>		· ·	<u> </u>				-
	6		35	59		36	62		30	53		27	50		3		
	7														×		
	eady											100%	.9		-+ ,;		

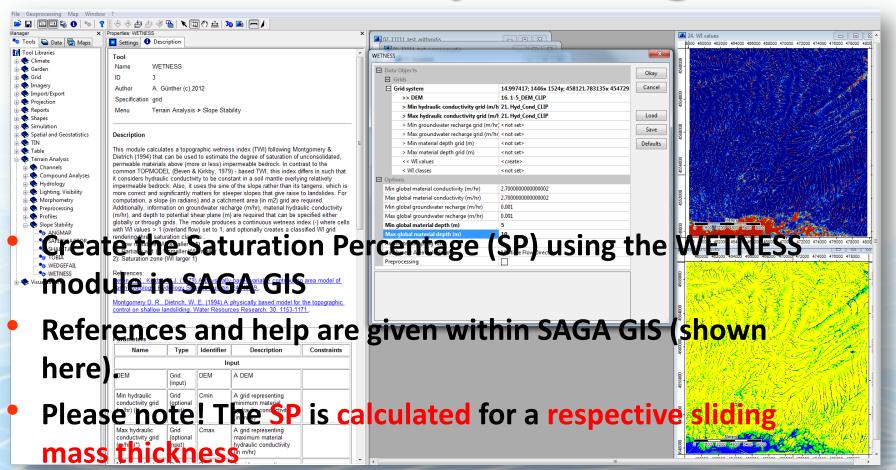
c' & φ' calculation (left)


Effective cohesion map (right) •

Geology – Engineering Geology



Geology – Engineering Geology



Saturation percentage

Saturation percentage parameters

Parameters taken into consideration

- Upslope Contribution (flow accumulation)
- Slope
- Hydraulic conductivity
- A combination of Rainfall and effective infiltration (GW recharge)
- Sliding mass thickness

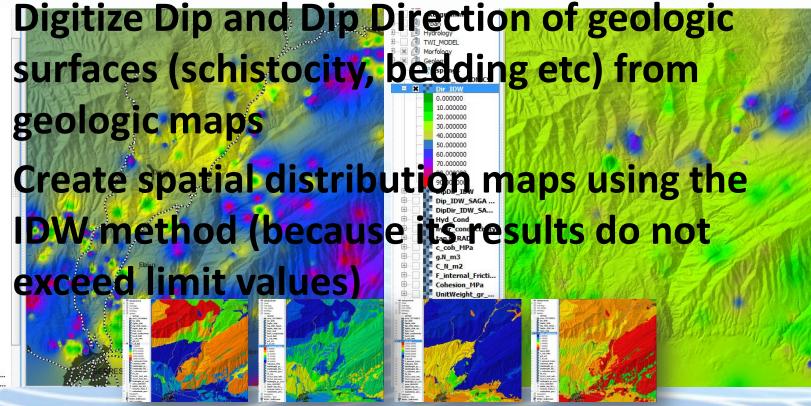

	01 11111 ++	
WETNE	SS	
🖃 Da	nta Objects	
	Grids	
E	Grid system	14.997417; 1446x 1524y; 458121.783135x 454729
	>> DEM	16. 1-5_DEM_CLIP
	> Min hydraulic conductivity grid (m/h	21. Hyd_Cond_CLIP
	> Max hydraulic conductivity grid (m/ł	21. Hyd_Cond_CLIP
	> Min groundwater recharge grid (m/hr)	<not set=""></not>
	> Max groundwater recharge grid (m/hr	<not set=""></not>
	> Min material depth grid (m)	<not set=""></not>
	> Max material depth grid (m)	<not set=""></not>
	<< WI values	<create></create>
	< WI classes	<not set=""></not>
ΞOp	otions	
M	in global material conductivity (m/hr)	2.700000000000002
M	ax global material conductivity (m/hr)	2.70000000000002
M	in global groundwater recharge (m/hr)	0.001
M	ax global groundwater recharge (m/hr)	0.001
M	in global material depth (m)	5
M	ax global material depth (m)	10
Pa	rameter sampling runs	1
Ca	tchment Area Calculation	Multiple Flow Direction
Pr	eprocessing	

Saturation percentage

Landslide HA – Susceptibility mapping

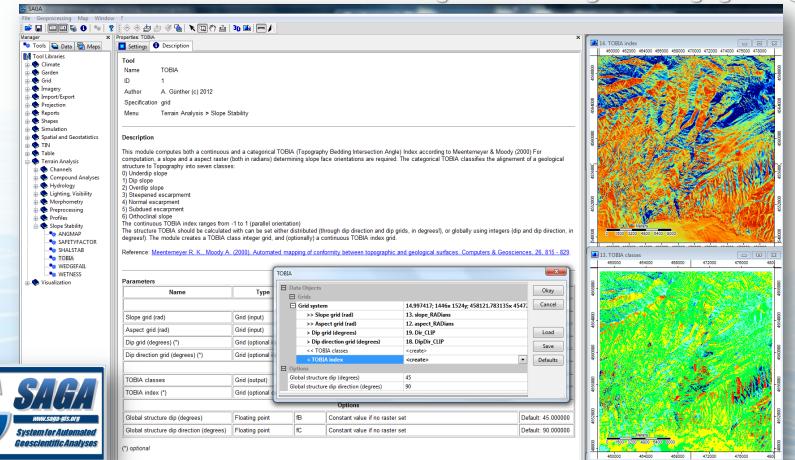
- Create TOBIA index and Classes
-Using the respective SAGA GIS module and
- ...Slope, Aspect, Dip and DipDirection maps

Meentemeyer R. K., Moody A. (2000). Automated mapping of conformity between topographic and geological surfaces. Computers & Geosciences, 26, 815 - 829.

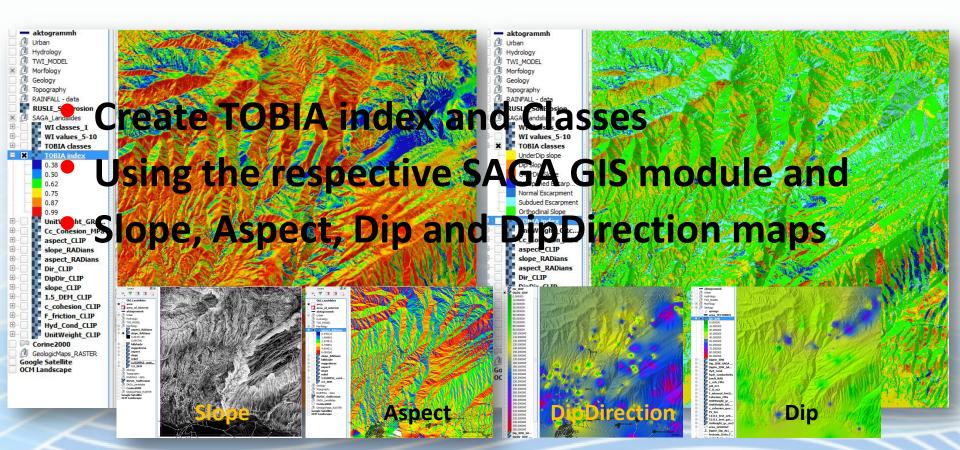


Dip and Dip Direction of geologic surfaces

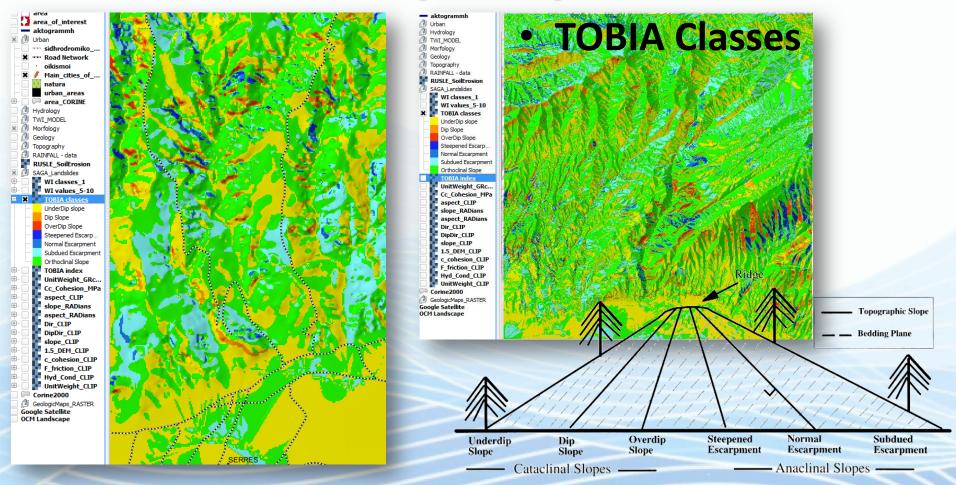
DipDir IDW 0.000000 10.000000 20.000000 30.000000 40.000000 50.000000 60.000000 70.000000 80.000000 90.000000 100.000000 110.000000 120,000000 130,000000 140.000000 150.000 160.000000 170.000000 180.000000 190.000000 200.000000 210.000000 220.000000 230.000000 240.000000 250.000000 260.000000 270.000000 280.000000 290.000000 300.000000 310,000000 320,000000 330.000000 340.000000 350.000000 360.000000 Din TDW SA Dir IDW



Landslide HA - Susceptibility mapping



Landslide Susceptibility



Landslide Susceptibility – TOBIA classes

Landslide HA – Factor of Safety

• Calculate Factor of Safety (FS) – water – 5m thick sliding mass*

 $F = \frac{c' + (\gamma - m\gamma_w) z \cos^2\beta \tan\phi'}{\gamma z \sin\beta \cos\beta}$

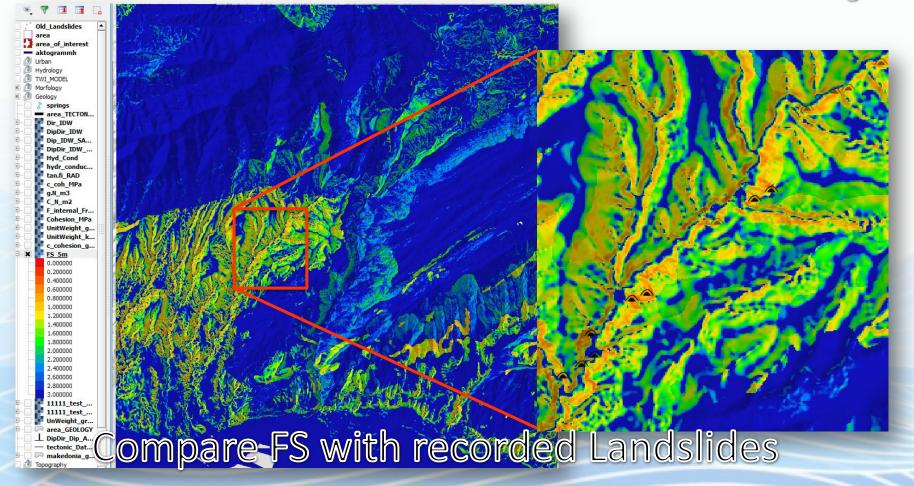
in which:

- c' = effective cohesion (Pa= N/m^2).
- γ = unit weight of soil (N/m³).

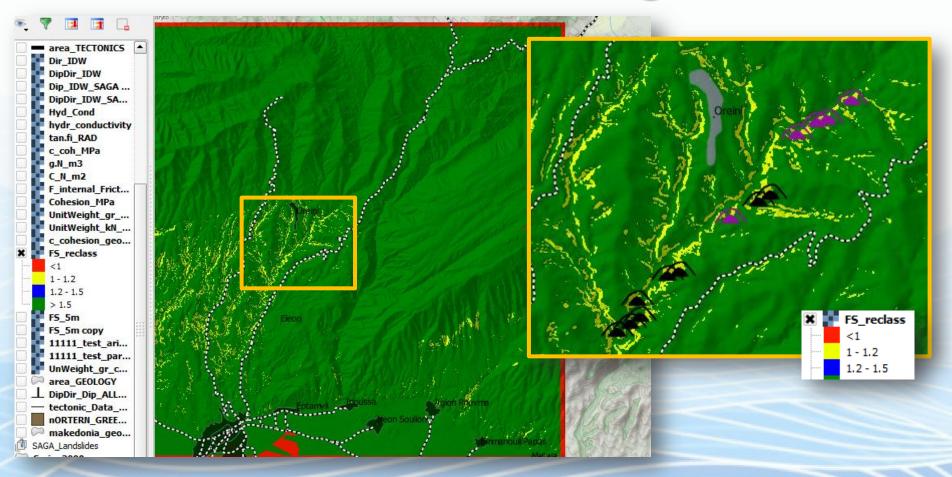
m = z_w/z (dimensionless).

- $\gamma_{\rm w}$ = unit weight of water (N/m³).
- z = depth of failure surface below the surface (m).
- z_w = height of watertable above failure surface (m).
- β = slope surface inclination (°).
- ϕ = effective angle of shearing resistance (°).
 - ...using the information layers created previously and the RASTER CALCULATOR module in QGIS

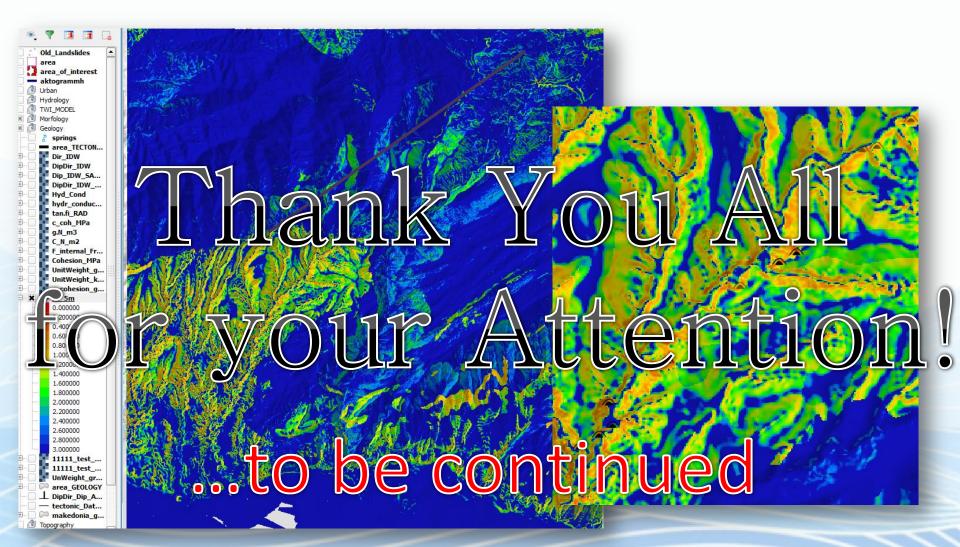
* We are currently working into incorporating a geomorphological model to <u>calculate</u> the soil thickness in the entire area


aster bands		Result la	yer			
"11111_test_arithmitis@1 "11111_test_paronomasti "1.5_DEM@1" "1.5_DEM@1" "1.5_DEM_CLIP@1" "Akhladhokh_GEOL@1" "Akhladhokh_GEOL@3" "C_N_m2@1" "Catchment Area_Model@ "Catchment Area_Model@ "Catchment Area_Model@	is@1" NTS_NA (Thin Plate Spline 01"	Output I Current X min Y min Columns Output f	457930.4872 4547037.177 1470	•	479980.48722 4570332.1779 1553	
"Cohesion MPa@1" ◀ Operators		× Add	result to projec		1	
+ *	sqrt	sin	^	acos	(
- /	cos	asin	tan	atan)	
< >	-	<=	>=	AND	OR	
aster calculator expression "C_N_m2@1" + (*g.N_m "tan.fi_RAD@1") / (*g.	13@1" - "WI values_5-10@	01" * 10000) * 5 pe_RADians@1")	* cos ("slope _. * cos ("slope	RADians@1") * cc _RADians@1"))	os ("slope_RADia	ns@1")

Landslide HA – Factor of Safety



Landslide Hazard ...FS on Regional Scales


Landslide HA – Factor of Safety

