

Landslide Hazard Assessment on a site-specific scale: vertical road axis N°75, Komotini-Nymfaia to Hellenic-Bulgarian border – (SciNet NatHazPrev Project)

Democritus University of Thrace (P1) Department of Civil Engineering *Geotechnical Division*

M. Psaroudakis, Th. Lazaridis, El. Petala, J. Gkiougkis, I. Markou, S. Skias and N. Klimis

Activity 3.1:

Landslide Hazard Assessment (LHA) at a regional scale based on the adopted/ adapted methodology

Activity 3.4:

Slope stability analyses on natural and cut slopes in order to propose preventive measures.

Scales:

Regional (1:250,000 to 1:25,000)

Local (1:25,000 to 1:5,000)

Site – Specific (< 1:5,000)

As defined in SafeLand project (Corominas et al, 2013)

Vertical Roadway Axis 75 (22.3km)

The slope stability analysis was carried out by using the specialized software **GSTABL7 with STEDwin**

This software has the ability of controlling automatically up to 5000 combinations of circular and polygonal plane surface of any shape, by using <u>limit equilibrium methods</u> such as Modified Bishop, Simplified Janbu etc.

In this case

It was used the modified Bishop method which uses the method of slices to discretize the soil mass and determine the F_s (Factor of Safety).

Modified Bishop's Method:

- Assume some failure surface
- Discretize failure surface into smaller elements (slices)
- Calculate factor of safety for each slice (strength/stress) and overall factor of safety
- Find lowest F_S for different failure surfaces

 $\psi = \cos \alpha + \frac{\sin \alpha \tan \phi'}{FS}$

Guidelines and Codes used:

The slop geometric Engineer Those re Transpor	pe sta cal cro ing) ar egulation t Plan	ability analysis was carried out ability analysis was carried out Section according to OMOE (H and EAK/2003 (Hellenic Seismic C $r_u = \gamma_w / \gamma$ the pore pre- over the tot stress) where the pore pre- over the tot stress	le (ratio of essure al normal	or No
FHWA-SA-96-069R)				
Required Factors of Safety:				
	A/A	Combination of Actions / Loads	F _s Required	
	1	Static (Permanent + Variable Actions / Loads)	>1.40	
	2	Hydraulic (Permanent + Variable Actions / Loads + Extreme hydraulic conditions corresponding to an event with a mean return period of 50 years)	>1.30	
	3	<u>Seismic</u> (Static conditions + earthquake, $K_h = 0.08g$, $K_v = \pm 0.04g$) given that PGA=0.16g for the examined area	>1.0	

Natural Slope : Static Conditions

1290_m_Cut_14-15 _static

Conditions: Static without any countermeasure

1207i_014-15 _Section_K29D_st

Conditions: Static with countermeasures (nails / passive anchors)

Conditions: Hydraulic with countermeasures (nails / passive anchors)

Conditions: Seismic with countermeasures (nails / passive anchors)

1207i_O14-15 _Section_K29D_s

Cut Slope O21 : km: 16+640 – 17+080

Natural Slope : Static Conditions

1290_m_Cut_21 _static

Conditions: Static without any countermeasure

Conditions: Static with countermeasures (nails / passive anchors)

Conditions: Hydraulic with countermeasures (nails / passive anchors)

Conditions: Seismic with countermeasures (nails / passive anchors)

Conditions: Static – 3D Geometry convex cut slope

Cut Slope O32 : km: 21+300 – 21+460

<u>Geometry – Geology of Cut Slope O32</u>

Conditions: Static without any countermeasure

Conditions: Static with countermeasures (nails / passive anchors)

1207k_O1096 Section 1096_st_aopl

Conditions: Hydraulic with countermeasures (nails / passive anchors)

Conditions: Seismic with countermeasures (nails / passive anchors)

Conditions: Static – 3D Geometry concave cut slope

благодаря

mulțumiri

teşekkürler

Спасибі